Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Профиль олимпиады: «Математика»

Класс участия: 9

Вариант задания: 1

№1. (15 баллов) Решить неравенство: $11 - \frac{12}{\sqrt{x^2 - 4x + 13}} \le \frac{7}{\sqrt{x^2 - 4x + 5}}$.

№2. (15 баллов) В равнобедренном треугольнике ABC с основанием AC высоты AH_1 и BH_2 пересекаются в точке H. Окружность ω , описанная около треугольника ABH, пересекает сторону BC в точке N. Известно, что BN =12, CN = 4. Найти радиус окружности ω .

№3. (15 баллов) Населённые пункты A, B, C и D находятся на берегу реки, причём A и D – вниз по течению реки, а B – вверх по течению реки относительно пункта C. Пункты A и B находятся на одинаковом расстоянии 10 км по реке от пункта C, а расстояние между пунктами C и D по реке равно 105 км. Первый корабль отправляется из B в сторону C, а через 6 минут после этого второй корабль отправляется из B в C и одновременно с ним 3-й отправляется из A в C. В пункт C все A корабля приплывают одновременно, после чего одновременно все три корабля отправляются в пункт A0. A1 корабль, доплыв до пункта A2, сразу разворачивается и отправляется назад. На обратном пути A3-й корабль встречает второй в 15 км от пункта A4, а первый – в 25 км от A5. Найдите скорость течения реки и собственные скорости всех трёх кораблей.

№4. (15 баллов) При каких значениях параметра a уравнение $\left(x+\sqrt{x^2}\right)\cdot \left(x-3\right)+2\left|x+2\right|-a=1$ имеет ровно три различных корня?

№5. (20 баллов) Последовательность величин сторон в остроугольном треугольнике образует арифметическую прогрессию. Пусть M, I – точки пересечения его медиан и биссектрис, соответственно. Найдите косинус его большего угла, если длина отрезка MI в 10 раз меньше одной из сторон данного треугольника.

№6. (20 баллов) Иллюминатор представляет собой однокамерный стеклопакет (два однородных одинаковых стекла). Определите, какой процент света пропускает одно стекло, если известно, что внутрь корабля стеклопакет пропускает треть попадающего на него света, а остальное отражается (без потерь).

РЕШЕНИЕ ЗАДАНИЙ

Профиль: Математика Предмет: Математика

Класс: 9 Вариант: 1

Nº1.

Решить неравенство:
$$11 - \frac{12}{\sqrt{x^2 - 4x + 13}} \le \frac{7}{\sqrt{x^2 - 4x + 5}}$$
.

Решение:

Перепишем неравенство в виде

$$\frac{7}{\sqrt{x^2 - 4x + 5}} + \frac{12}{\sqrt{x^2 - 4x + 13}} \ge 11.$$

Оценим подкоренные выражения

$$x^{2} - 4x + 13 = (x - 2)^{2} + 9 \ge 9,$$

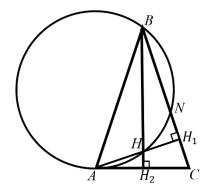
$$\sqrt{(x - 2)^{2} + 9} \ge 3 \implies \frac{12}{\sqrt{x^{2} - 4x + 13}} \le 4,$$

$$x^{2} - 4x + 5 = (x - 2)^{2} + 1 \ge 1 \implies \frac{7}{\sqrt{x^{2} - 4x + 5}} \le 7.$$

Получим
$$\frac{7}{\sqrt{x^2-4x+5}} + \frac{12}{\sqrt{x^2-4x+13}} \le 11.$$

Таким образом, неравенство будет верным только, когда $\frac{7}{\sqrt{x^2-4x+5}}+\frac{12}{\sqrt{x^2-4x+13}}=11.$

Это возможно только в том случае, когда каждая из дробей принимает наибольшее значение, т.е. при x=2.


Ответ: 2.

Nº2.

В равнобедренном треугольнике ABC с основанием AC высоты AH_1 и BH_2 пересекаются в точке H. Окружность ω , описанная около треугольника ABH, пересекает сторону BC в точке N. Известно, что BN=12, CN=4. Найти радиус окружности ω .

Решение:

- 1) Докажем, что окружность ω касается прямой AC. ΔABC равнобедренный $=> BH_2$ высота и биссектриса $=> \angle ABH_2 = \angle CBH_2$ $=> \angle ABH_2 = \angle CAH_1$ => прямая AC касается окружности ω .
- 2) По свойству касательной и секущей $\mathit{CB} \cdot \mathit{CN} = \mathit{CA}^2 => \mathit{CA} = 8.$ Тогда

$$2R_{\omega} = \frac{AB}{\sin \angle AHB}, \quad 2R_{\Delta ABC} = \frac{AB}{\sin \angle ACB},$$

$$\angle ACB = 180^{\circ} - \angle AHB => \sin \angle ACB = \sin \angle AHB => R_{\omega} = R_{\Delta ABC}.$$

$$S_{\Delta ABC} = \frac{1}{2} \cdot CA \cdot \sqrt{BC^2 - CH_2^2} = 16\sqrt{15}.$$

$$R_{\Delta ABC} = \frac{AB \cdot BC \cdot CA}{4S_{\Delta ABC}} => R_{\Delta ABC} = \frac{32}{\sqrt{15}} => R_{\omega} = \frac{32\sqrt{15}}{15}.$$

Ответ:
$$\frac{32\sqrt{15}}{15}$$

Nº3.

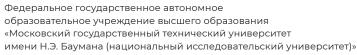
Населённые пункты A, B, C и D находятся на берегу реки, причём A и D — вниз по течению реки, а B — вверх по течению реки относительно пункта C. Пункты A и B находятся на одинаковом расстоянии 10 км по реке от пункта C, а расстояние между пунктами C и D по реке равно 105 км. Первый корабль отправляется из B в сторону C, а через 6 минут после этого второй корабль отправляется из B в C и одновременно C ним C0 отправляется из C1 в пункт C2 все C3 корабля приплывают одновременно, после чего одновременно все три корабля отправляются в пункт C3-й корабль, доплыв до пункта C4 сразу разворачивается и отправляется назад. На обратном пути C5-й корабль встречает второй в 15 км от пункта C5 км от C6. Найдите скорость течения реки и собственные скорости всех трёх кораблей.

Решение.

Пусть v км/ч – скорость течения реки, x км/ч – скорость первого корабля, y км/ч – скорость второго корабля, z км/ч – скорость третьего корабля. Тогда скорости:

Первого корабля по течению = (x+v) км/ч;

Второго корабля по течению = (y+v) км/ч;


Третьего корабля по течению = (z+v) км/ч;

Третьего корабля против течения = (z-v) км/ч.

Тогда получаем систему уравнений:

$$\begin{cases} \frac{10}{x+v} - \frac{10}{y+v} = \frac{1}{10} \\ \frac{10}{y+v} = \frac{10}{z-v} \\ \frac{105}{z+v} + \frac{15}{z-v} = \frac{90}{y+v} \\ \frac{105}{z+v} + \frac{25}{z-v} = \frac{80}{x+v} \end{cases}$$

Сделаем замены переменных: $a = \frac{1}{x+v}$; $b = \frac{1}{v+v}$; $c = \frac{1}{z+v}$; $d = \frac{1}{z-v}$.

Тогда:
$$\begin{cases} 10a-10b=0,1\\ 10b=10d\\ 7a+d=6b \end{cases}.$$
 Из второго уравнения получаем $b=d$.

21c + 5d = 16a

Подставляем в третье уравнение, получаем 7c+b=6b, откуда $b=\frac{7}{5}c$. Подставляем в четвёртое уравнение, получаем $21c+5\cdot\frac{7}{5}c=16a$, откуда 28c=16a и $a=\frac{7}{4}c$. Подставляем полученные выражения переменных в первое уравнение, получаем: $10\cdot\frac{7}{4}c-10\cdot\frac{7}{5}c=0,1$, решением которого будет $c=\frac{1}{35}$. Из предыдущих уравнений получаем: $a=\frac{7}{4}c=\frac{7}{4}\cdot\frac{1}{35}=\frac{1}{20}$. $b=d=\frac{7}{5}c=\frac{7}{5}\cdot\frac{1}{35}=\frac{1}{25}$. Вернёмся первоначальным переменным:

$$\begin{cases} \frac{1}{x+v} = \frac{1}{20} \\ \frac{1}{y+v} = \frac{1}{25} \\ \frac{1}{z+v} = \frac{1}{35} \end{cases}; \begin{cases} x+v=20 \\ y+v=25 \\ z+v=35 \\ z-v=25 \end{cases}$$
 Решением этой системы является:
$$\frac{1}{z-v} = \frac{1}{25}$$

$$x=15; \quad y=20; \quad z=30; \quad v=5.$$

Ответ: собственная скорость первого корабля = 15 км/ч; второго = 20 км/ч; третьего = 30 км/ч; скорость течения реки = 5 км/ч.

Nº4. (15 баллов) При каких значениях параметра a уравнение $\left(x+\sqrt{x^2}\right)\cdot \left(x-3\right)+2\left|x+2\right|-a=1$ имеет ровно три различных корня?

Решение:

преобразуем уравнение к виду: $(x+|x|)\cdot(x-3)+2|x+2|-a=1$.

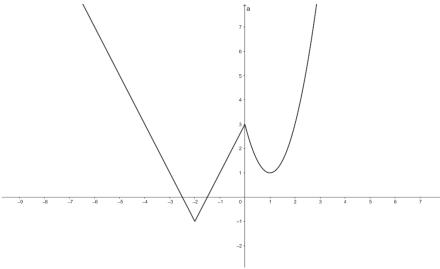
Раскроем модуль |x| и выразим a, получим:

$$\begin{cases} x \le 0 \\ a = 2 \cdot |x+2| - 1 \\ x > 0 \end{cases}$$

$$\begin{cases} a = 2x \cdot (x-3) + 2|x+2| - 1 \end{cases}$$

Раскроем |x+2| и приведём подобные во втором уравнении, получим:

$$\begin{cases}
 x < -2 \\
 a = -2x - 4 - 1 \\
 \begin{cases}
 -2 \le x \le 0 \\
 a = 2x + 4 - 1
\end{cases};$$


$$\begin{cases}
 a = 2x^2 - 6x + 2x + 3
\end{cases};$$

$$\begin{cases}
 x < -2 \\
 a = -2x - 5 \\
 -2 \le x \le 0 \\
 a = 2x + 3
\end{cases};$$

$$\begin{cases}
 x < -2 \\
 a = -2x - 5 \\
 -2 \le x \le 0 \\
 a = 2x + 3
\end{cases};$$

$$\begin{cases}
 a = 2x + 3 \\
 x > 0
\end{cases};$$

Построим график в осях хОа:

Из графика видно, что при a < -1 уравнение не имеет корней, При a = -1 - 1 корень;

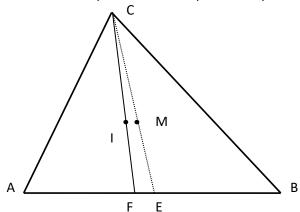
При $a \in (-1,1) \cup (3,+\infty)$ - 2 различных решения;

При $a \in \{1,3\}$ - 3 различных решения;

При $a \in (1;3)$ - 4 решения.

Ответ: {1;3}

Nº5.


Последовательность величин сторон в остроугольном треугольнике образует арифметическую прогрессию. Пусть M, I – точки пересечения его медиан и биссектрис, соответственно. Найдите косинус его большего угла, если длина отрезка MI в 10 раз меньше одной из сторон данного треугольника.

Решение:

Пусть в треугольнике $ABC \angle A = \alpha$ — больший, тогда $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot cos\alpha$.

Пусть AB = a, BC = a + d, AC = a - d, MI = x, тогда $cos\alpha = \frac{a^2 - 4ad}{2a^2 - 2ad} = \frac{a^2 - 4ad}{a^2 - 2ad}$

Докажем, что *IM* параллельна *AB*:

<u>1 способ.</u>

По свойству медиан – CM: ME = 2: 1, по свойству биссектрис – CI: IF = (AC + BC): AB = 2: 1 => IM — параллельна AB.

2 способ.

По свойству медиан – CM: ME = 2:1, пусть r – радиус, вписанной в треугольник ABC, окружности, а h – его высота, опущенная из вершины C.

$$r = rac{2S_{ABC}}{P_{ABC}} = rac{2S_{ABC}}{3a} = rac{1}{3}h => IM -$$
 параллельна AB .

Треугольники CMI и CEF — подобны по двум пропорциональным сторонам и углу между ними, с коэффициентом IM: FE=2: 3=>FE=1,5x. Но AE=0,5a, AF=0,5AC — по свойству биссектрисы $=>FE=0,5a-0,5(a-d)=1,5x=>d=3x=>cos\alpha=\frac{a-12x}{2(a-3x)}$.

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Возможны три варианта:

1)
$$a-d=10x=>a=13x=>cos\alpha=rac{x}{20x}=rac{1}{20}>0$$
 — остроугольный.

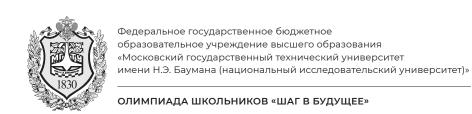
2)
$$a = 10x = \cos\alpha = \frac{-2x}{14x} = -\frac{1}{7} < 0$$
 — тупоугольный.

3)
$$a+d=10x=>a=7x=>cos\alpha=\frac{-5x}{8x}=-\frac{5}{8}<0$$
 тупоугольный.

Ответ:
$$\frac{1}{20}$$
.

Nº6.

Иллюминатор представляет собой однокамерный стеклопакет (два однородных одинаковых стекла). Определите, какой процент света пропускает одно стекло, если известно, что внутрь корабля стеклопакет пропускает треть попадающего на него света, а остальное отражается (без потерь).


Рассмотрим однокамерный стеклопакет, как конструкцию из двух стекол. Пусть первое стекло отражает p -ю часть света, тогда пропустит оно 1-p часть.

Первое решение. Тогда второе стекло пропустит $(1-p)^2$ часть, а отразит (1-p)p -ю часть, тогда первое стекло отразит $(1-p)p^2$ часть, а второе пропустит $(1-p)^2p^2$ ее часть и т.д. Таким образом, всего стеклопакет пропустит $(1-p)^2(1+p^2+p^4+\cdots)=(1-p)^2\frac{1}{1-p^2}=\frac{1-p}{1+p}=\frac{1}{3}=>p=\frac{1}{2}=>1-p=\frac{1}{2}.$

Второе решение. Пусть второе стекло пропустит всего x -ю часть дошедшего до него света, тогда это будет x(1-p) часть всего. От второго стекла отразится (1-p)p часть, а, следовательно, обратно первое стекло пропустит всего (1-p)px часть. Таким образом, всего от стеклопакета отразится p+(1-p)px часть. Так как, по условию задачи, весь свет либо отразится, либо пройдет сквозь стеклопакет, то получим

$$p + (1-p)px + (1-p)x = 1 => x = \frac{1}{1+p} => \frac{1-p}{1+p} = \frac{1}{3} => p = \frac{1}{2} => 1 - p = \frac{1}{2}.$$

Ответ: 50%.

Критерии оценивания олимпиадной работы

Профиль: Математика **Предмет:** Математика **Класс:** 9, вариант 1

Задание 1 максимальная оценка: 15 баллов

eaparitie :	
Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Обоснованно получен верный ответ	15
Получен верный ответ, но решение недостаточно обосновано, все дальнейшие шаги верны, или не сделана проверка решения x = 2 при верной последовательности всех других шагов решения.	10
Получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения, или верно выполнена оценка, но дальнейшие продвижения отсутствуют.	5
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Задание 2 максимальная оценка: 15 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Обоснованно получен верный ответ	15
При верном и обоснованном ходе решения допущена арифметическая ошибка или решение недостаточно обосновано.	10
Верно начато решение задачи, доказано только условие касания прямой АС и окружности ω или верно найден радиус окружности ω , но не доказано условие касания прямой АС и окружности ω .	5
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Задание 3 максимальная оценка: 15 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Обоснованно получены все ответы задачи	15
При обоснованном решении верно найдены три из четырёх скоростей	13
При верном и обоснованном решении правильно найдены от одной до двух скоростей	10
Верно составлена система уравнений и предъявлен правильный алгоритм её решения, но верные ответы не получены из-за арифметической ошибки.	8
Верно составлена система уравнений.	5
Решение не соответствует ни одному из ранее перечисленных случаев или отсутствует.	0

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Задание 4 максимальная оценка: 15 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Обоснованно получены все ответы задачи	15
При верном обоснованном решении получено только одно верное значение параметра или кроме двух верных значений параметра получено одно лишнее значение.	12
Верно построен график уравнения или определён алгоритм аналитического решения, но не получен ни один верный ответ из-за невнимательности или арифметической ошибки.	8
Верно раскрыты (сняты) все модули	5
Верно заменён $\sqrt{x^2}$ на $ x $.	2
Решение не соответствует ни одному из ранее перечисленных случаев или отсутствует.	0

Задание 5 максимальная оценка: 20 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Обоснованное и грамотно выполненное решение задачи.	20
При верном и обоснованном ходе решения (доказано, что IM параллельна AB и FE = 1.5IM), но получен неверный ответ, или решение недостаточно обосновано.	15
Верно начато решение задачи, получены некоторые промежуточные результаты, дальнейшее решение неверно или отсутствует.	5
Решение не соответствует вышеперечисленным требованиям.	0

Задание 6 максимальная оценка: 20 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Обоснованное и грамотно выполненное решение задачи.	20
При верном и обоснованном ходе решения задачи решение недостаточно обосновано.	15
Верно начато решение задачи, получены некоторые промежуточные результаты, дальней- шее решение неверно или отсутствует	5
Решение не соответствует вышеперечисленным требованиям.	0