

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Профиль олимпиады: «Математика»

Класс участия: 11

Вариант задания: 2

Задача 1 (12 *баллов*). Пусть $x = \log_3 15$, $y = \lg 12$. Представьте $\log_2 3$ в виде рационального выражения, составленного из натуральных чисел, x и y (с использованием скобок и знаков арифметических действий +, -, ·, :).

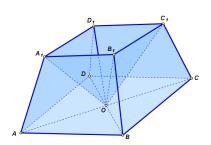
Задача 2 (16 *баллов*). Карточки с буквами П, О, Т, О, М, С, Т, В, А сложили в строку в случайном порядке. С какой вероятностью найдутся три карточки подряд, образующие слово ТОМ или ПОТ? Ответ запишите в виде несократимой дроби.

Задача 3 (16 *баллов*). Высота BH треугольника ABC является диаметром окружности, которая пересекает стороны AB и BC в точках D и E соответственно. Прямые, касающиеся этой окружности в точках D и E, пересекаются в точке F. Прямая BF пересекает сторону AC в точке K. Найдите отношение AK:KC и длины отрезков DF и BK, если BH=6, AD=25/26, CE=32/5.

Задача 4 (16 *баллов*). Для каждого значения параметра α решите систему неравенств

$$\begin{cases} \frac{(x^2 - 4x + 6 - a)(a - x - 2)}{\sqrt{9 - x}} < 0, \\ \log_{(x^2 - 4x)/5} (a - 1)^3 \le 3. \end{cases}$$

Задача 5 (20 *баллов*). В правильной усеченной четырехугольной пирамиде $ABCDA_1B_1C_1D_1$ сторона нижнего основания ABCD равна 8, верхнего основания $A_1B_1C_1D_1$ равна 4, высота пирамиды $ABCDA_1B_1C_1D_1$ равна $8\sqrt{2/5}$, точка O – центр основания ABCD. Поверхность многогранника Φ состоит из квадрата ABCD, боковых граней пирамиды



 $ABCDA_1B_1C_1D_1$ и боковых граней пирамиды $OA_1B_1C_1D_1$. Найдите площадь сечения многогранника Φ плоскостью, проходящей через точки D, C_1 и середину ребра A_1B_1 .

Задача 6 (20 баллов). См. на обороте листа.

Задача 6 (20 *баллов*). Сотовая связь – это целый мир возможностей. Но чтобы пользоваться ими, нужно быть в зоне действия базовой станции. Сети GSM (2G) имеют мощность, которая позволяет покрывать территорию радиусом до 35 километров на открытой местности. В городских условиях, где много зданий, зона приема сигнала значительно уменьшается. Сети 3G и 4G (LTE) работают на более высоких частотах, чем сети 2G, и их сигнал хуже проникает сквозь препятствия и больше подвержен помехам. В сетях GSM было достаточно нескольких вышек, чтобы покрывать большие территории, а для 3G и 4G сетей для обеспечения надежной связи требуется больше вышек.

В городе установлен ретранслятор GSM сети, который обеспечивает покрытие в пределах окружности радиусом R=10 км. Центр окружности – основание вышки. Однако из-за особенностей рельефа зона покрытия этого ретранслятора ограничена хордой, проведенной внутри этой окружности. Хорда находится на расстоянии d=2 км от центра окружности.

В меньшем сегменте, образованном хордой, необходимо установить три дополнительных ретранслятора (ЗС вышки) с круговыми зонами покрытия так, чтобы две зоны имели одинаковый радиус и касались третьей зоны, а также чтобы все три зоны касались хорды и основной окружности.

Найдите радиусы зон покрытия трех дополнительных ретрансляторов, которые нужно установить в меньшем сегменте. Определите площадь части меньшего сегмента, которая не попадает в зону действия дополнительных ретрансляторов.

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Решение заданий

Профиль: Математика

Класс: 11 Вариант: 2

1. Пусть $x = \log_3 15$, $y = \lg 12$. Представьте $\log_2 3$ в виде рационального выражения, составленного из натуральных чисел, x и y (с использованием скобок и знаков арифметических действий $+, -, \cdot, :$). (12 баллов)

Pешение. Сведём все логарифмы к двоичным. Пусть $\log_2 3 = a$, $\log_2 5 = b$. Тогда

$$x = \frac{\log_2 15}{\log_2 3} = \frac{a+b}{a}, \qquad y = \frac{\log_2 12}{\log_2 10} = \frac{2+a}{1+b}$$

Получаем

$$\begin{cases} ax = a+b \\ (1+b)y = 2+a \end{cases} \Rightarrow \begin{cases} b = a(x-1) \\ y + a(x-1)y = 2+a \end{cases} \Rightarrow a = \frac{2-y}{(x-1)y-1}$$

Ответ: (2-y)/(xy-y-1).

2. Карточки с буквами П, О, Т, О, М, С, Т, В, А сложили в строку в случайном порядке. С какой вероятностью найдутся три карточки подряд, образующие слово ТОМ или ПОТ? Ответ запишите в виде несократимой дроби.

Решение. Число перестановок 9 карточек, среди которых 2 O, 2 T и 5 разных: 9!/2!2! = 90720. Чтобы составить строку, содержащую слово ТОМ, нужно произвольно расставить 7 блоков: ТОМ, О, П, С, Т, В, А. Это можно сдедать 7! способами.

Чтобы составить строку, содержщую сдово ПОТ, нужно производьно расставить 7 бдоков: ПОТ, О, M, C, T, B, A. Это можно сдедать 7! способами.

Но мы дважды посчитали строки, содержащие одновременно слова ТОМ и ПОТ, причем содержать могут по-разному:

Чтобы составить строку, содержщую отдельные сдова ТОМ и ПОТ, нужно производьно расставить 5 бдоков: ПОТ, ТОМ, С, В, А. Это можно сдедать 5! способами.

Чтобы составить строку, содержщую сдово ПОТОМ, нужно производьно расставить 5 бдоков: ПОТОМ, С, Т, В, А. Это можно сдедать 5! способами.

В итоге мы имеем $2 \cdot 7! - 2 \cdot 5! = 9840$ бдагоприятных перестановок. Вероятность = 9840/90720

Ответ: 41/378

3. Высота BH треугольника ABC является диаметром окружности, которая пересекает стороны AB и BC в точках D и E соответственно. Прямые, касающиеся этой окружности в точках D и E, пересекаются в точке F. Прямая BF пересекает сторону AC в точке K. Найдите отношение AK:KC и длины отрезков DF и BK, если BH=6, AD=25/26, CE=32/5. (16 баллов)

Решение.

Найдем стороны треугольника АВС.

Треугольники *BDH* и *BHA* подобные, и

$$\frac{BH}{AB} = \frac{BD}{BH} \Rightarrow BH^2 = AB \cdot BD \Rightarrow$$

$$BH^2 = AB \cdot (AB - AD) \Rightarrow$$

$$AB^2 - AD \cdot AB - BH^2 = 0 \Longrightarrow$$

$$26AB^2 - 25AB - 36 \cdot 26 = 0, \sqrt{D} = 313,$$

$$AB = 6, 5.$$

Треугольники ВЕН и ВНС подобные, и

$$\frac{BH}{BC} = \frac{BE}{BH} \Rightarrow BH^2 = BC \cdot BE \Rightarrow$$

$$BH^2 = BC \cdot (BC - CE) \Rightarrow BC^2 - CE \cdot BC - BH^2 = 0 \Rightarrow$$

$$5BC^2 - 32BC - 36 \cdot 5 = 0, \sqrt{D} = 68, BC = 10.$$

Тогда
$$AH = 2.5$$
, $HC = 8$, $AC = 10.5$.

Пусть O - центр окружности. Тогда $\angle ODF = \angle BDH = 90^{\circ} \Rightarrow$

$$\angle BDO = \angle FDH$$
, $\angle GDF = \angle FGD$. Треугольник DFG равнобедренный, $DF = FG$.

Аналогично, треугольник EFL равнобедренный, EF = FL.

Поскольку по свойству касательных EF = DF, то GF = LF. Следовательно, BF - медиана треугольника GBL. Треугольники GBL и ABC подобны, BK - медиана треугольника ABC. Таким образом, AK : KC = 1:1.

Зная стороны треугольника АВС, найдем медиану

$$BK = \frac{1}{2}\sqrt{2AB^2 + 2BC^2 - AC^2} = \frac{1}{2}\sqrt{2 \cdot \frac{13^2}{4} + 2 \cdot 10^2 - \frac{21^2}{4}} = \frac{\sqrt{697}}{4}.$$

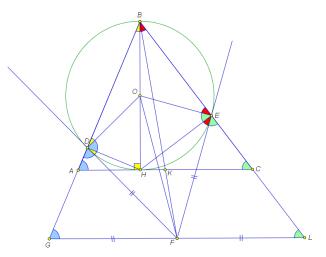
Найдем
$$DF$$
. ∠ $DOE = 2$ ∠ $ABC \Rightarrow ∠OFD = 90° - ∠ $ABC \Rightarrow$$

$$DF = OD \operatorname{ctg}(\angle OFD) = OD \operatorname{tg}(\angle ABC) = 3\operatorname{tg}(\angle ABC).$$

По теореме косинусов найдем
$$\cos(\angle ABC) = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{169 + 400 - 441}{4 \cdot 13 \cdot 10} = \frac{16}{65}$$
. Тогда

$$\sin(\angle ABC) = \sqrt{1 - \left(\frac{16}{65}\right)^2} = \frac{63}{65}, \text{ if } tg(\angle ABC) = \frac{63}{16}, DF = \frac{3 \cdot 63}{16} = \frac{189}{16}.$$

OTBET:
$$AK: KC = 1:1$$
, $BK = \frac{\sqrt{697}}{4}$, $DF = \frac{189}{16}$.



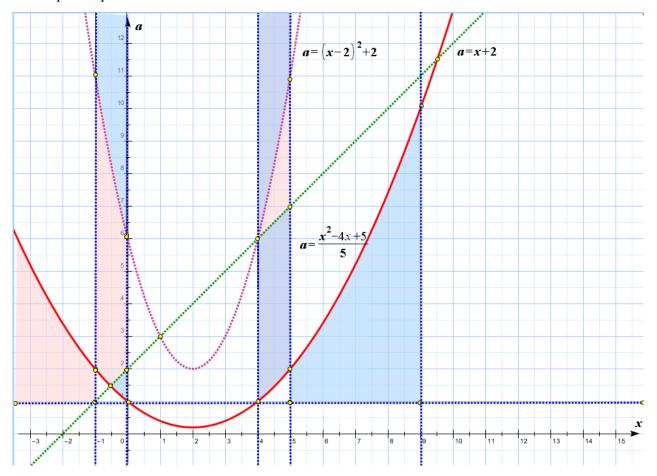
4. Для каждого значения параметра a решите систему неравенств $\begin{cases} \frac{(x^2-4x+6-a)(a-x-2)}{\sqrt{9-x}} < 0, \\ \log_{(x^2-4x)/5}(a-1)^3 \leq 3. \end{cases}$ (16 баллов)

Решение:

$$\begin{cases}
\frac{(x^2 - 4x + 6 - a)(x - a + 2)}{\sqrt{9 - x}} > 0, & \begin{cases}
((x - 2)^2 + 2 - a)(x - a + 2) > 0, \\
x < 9, \\
x(x - 4) > 0, & x \neq -1, & x \neq 5, & a > 1,
\end{cases}$$

$$(x^2 - 4x - 5) \left(a - \frac{x^2 - 4x + 5}{5}\right) \le 0.$$

Изобразим решение данной системы на плоскости Оха:



Найдем точку x < 9 пересечения прямой a = x + 2 и параболы $a = \frac{x^2 - 4x + 5}{5}$. Имеем $\frac{x^2 - 4x + 5}{5} = x + 2$, $x^2 - 9x - 5 = 0$, x < 9, $x = \frac{9 - \sqrt{101}}{2}$, $a = \frac{13 - \sqrt{101}}{2}$. Найдем корни уравнения $x^2 - 4x + 5 - 5a = 0$, $(x - 2)^2 = 5a - 1$, $x_{1/2} = 2 \pm \sqrt{5a - 1}$.

Найдем корни уравнения

$$(x-2)^2 + 2 - a = 0$$
, $(x-2)^2 = a - 2$, $x_{1/2} = 2 \pm \sqrt{a-2}$, $a \ge 2$.

1) При
$$a \in \left(1; \frac{13 - \sqrt{101}}{2}\right)$$
 имеем $x \in \left[2 - \sqrt{5a - 1}; 0\right) \cup \left(4; 2 + \sqrt{5a - 1}\right] \cup \left(5; 9\right)$.

2) При
$$a \in \left[\frac{13-\sqrt{101}}{2}; 2\right]$$
 имеем $x \in (a-2;0) \cup (4;2+\sqrt{5a-1}] \cup (5;9)$.

- 3) При a = 2 имеем $x \in (4; 5) \cup (5; 9)$.
- 4) При $a \in (2; 6]$ имеем $x \in (4; 5) \cup [2 + \sqrt{5a 1}; 9)$.
- 5) При $a \in (6;7)$ имеем $x \in (2-\sqrt{a-2};0) \cup (4;2+\sqrt{a-2}) \cup (a-2;5) \cup [2+\sqrt{5a-1};9).$
- 6) При $a \in [7;10)$ имеем $x \in (2-\sqrt{a-2};0) \cup (4;2+\sqrt{a-2}) \cup [2+\sqrt{5a-1};9)$.
- 7) При $a \in [10; 11)$ имеем $x \in (2 \sqrt{a-2}; 0) \cup (4; 2 + \sqrt{a-2}).$
- 8) При $a \in [11; +\infty)$ имеем $x \in (-1; 0) \cup (4; 5)$.
- 9) При $a \le 1$ решений нет.

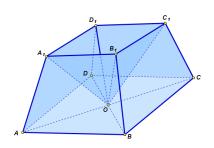
Ответ:

1) При
$$a \in \left(1; \frac{13 - \sqrt{101}}{2}\right)$$
 имеем $x \in \left[2 - \sqrt{5a - 1}; 0\right) \cup \left(4; 2 + \sqrt{5a - 1}\right] \cup \left(5; 9\right)$.

2) При
$$a \in \left[\frac{13-\sqrt{101}}{2}; 2\right]$$
 имеем $x \in (a-2; 0) \cup (4; 2+\sqrt{5a-1}] \cup (5; 9).$

- 3) При a = 2 имеем $x \in (4; 5) \cup (5; 9)$.
- 4) При $a \in (2; 6]$ имеем $x \in (4; 5) \cup [2 + \sqrt{5a 1}; 9)$.
- 5) При $a \in (6;7)$ имеем $x \in (2-\sqrt{a-2};0) \cup (4;2+\sqrt{a-2}) \cup (a-2;5) \cup [2+\sqrt{5a-1};9).$
- 6) При $a \in [7;10)$ имеем $x \in (2-\sqrt{a-2};0) \cup (4;2+\sqrt{a-2}) \cup [2+\sqrt{5a-1};9).$
- 7) При $a \in [10; 11)$ имеем $x \in (2 \sqrt{a-2}; 0) \cup (4; 2 + \sqrt{a-2}).$
- 8) При $a \in [11; +\infty)$ имеем $x \in (-1; 0) \cup (4; 5)$.
- 9) При $a \le 1$ решений нет.

5. В правильной усеченной четырехугольной пирамиде $ABCDA_1B_1C_1D_1$ сторона нижнего основания ABCD равна 8, верхнего основания $A_1B_1C_1D_1$ равна 4, высота пирамиды $ABCDA_1B_1C_1D_1$ равна $8\sqrt{2/5}$, точка O — центр основания ABCD. Поверхность многогранника Φ состоит из квадрата ABCD, боковых граней пирамиды $ABCDA_1B_1C_1D_1$ и боковых граней пирамиды $OA_1B_1C_1D_1$. Найдите площадь сечения

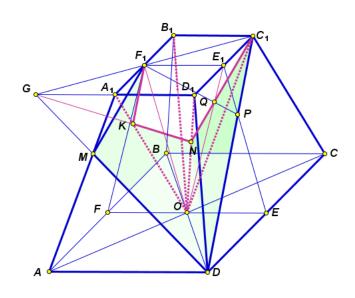


многогранника Φ плоскостью, проходящей через точки D , C_1 и середину ребра A_1B_1 . (20 баллов)

Решение.

Пусть a = AB = 8, $b = A_1B_1 = 4$, высоту пирамиды $ABCDA_1B_1C_1D_1$ обозначим h, $h = 8\sqrt{2/5}$.

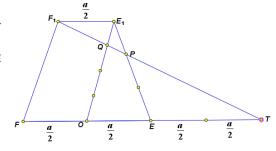
Построим сечение многогранника Ф . Пусть точки F и F_1 - середины AB и A_1B_1 соответственно, E и $E_{\scriptscriptstyle 1}$ - середины CD и C_1D_1 соответственно. Прямая F_1C_1 принадлежит плоскости сечения. Найдем точку G пересечения этой прямой с прямой A_1D_1 . Точки G и D лежат в плоскости грани ADD_1A_1 . Прямая GDпринадлежит плоскости сечения. Найдем точку пересечения этой прямой с ребром AA_1 . Треугольники $B_1C_1F_1$ и A_iGF равны, и $A_1G = b = \frac{a}{2} = 4.$



Треугольники $A_{\rm l}GM$ и ADM подобны, и $\frac{A_{\rm l}G}{AD} = \frac{A_{\rm l}M}{AM} = \frac{1}{2}$.

Пусть P — точка пересечения прямых DC_1 и EE_1 . Эта точка принадлежит плоскости искомого сечения многогранника Φ , и $\frac{E_1P}{PE}=\frac{E_1C_1}{DE}=\frac{1}{2}$. В плоскости трапеции FEE_1F_1 проведем прямую F_1P . Поскольку $O\in FE$, найдем точку пересечения прямой F_1P с отрезком OE_1 .

Обозначим эту точку Q. Найдем $\frac{E_1Q}{QO}$. Пусть T – точка пересечения прямых F_1P и FE. Из подобия треугольников F_1E_1P и TEP следует, что $ET=2F_1E_1$.



A из подобия треугольников F_1E_1Q и TOQ следует, что $OQ = 3QE_1$.

Прямая C_1Q принадлежит плоскости сечения. Найдем точку N пересечения этой прямой с ребром OD_1 . По теореме Менелая имеем

$$rac{D_1N}{NO}\cdotrac{OQ}{QE_1}\cdotrac{E_1C_1}{D_1C_1}=1.$$
 Следовательно, $rac{D_1N}{NO}=rac{2}{3}.$

Прямая GN принадлежит плоскости сечения. Найдем точку K пересечения этой прямой с ребром OA_1 . По теореме Менелая имеем

$$\frac{A_{_{1}}K}{KO}\cdot \frac{ON}{ND_{_{1}}}\cdot \frac{D_{_{1}}G}{GA_{_{1}}}=1.$$
 Следовательно, $\frac{A_{_{1}}K}{KO}=\frac{1}{3}.$

Сечением многогранника Φ будет многоугольник DC_1NKF_1M .

Площадь сечения DC_1NKF_1M будем вычислять по формуле

$$S_{ceq} = \frac{S_{np}}{\cos \varphi}$$
, где S_{np} - площадь проекции сечения на плоскость

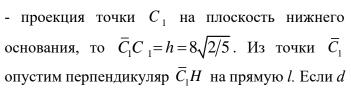
основания, φ - угол между плоскостью сечения и плоскостью основания. Найдем площадь проекции сечения на плоскость основания.

$$S_{np} = \frac{5a^2}{8} - \frac{a^2}{12} - \frac{3}{4} \cdot \frac{3}{5} \cdot \frac{a^2}{16} - \left(\frac{a^2}{8} - \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{a^2}{8}\right) - \frac{3}{4} \cdot \frac{a^2}{32} - \frac{3}{5} \cdot \frac{a^2}{16} - \frac{1}{2} \cdot \frac{a^2}{4} =$$

$$= \frac{469a^2}{3 \cdot 640} = \frac{469}{30}.$$

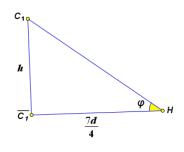
Плоскость сечения и плоскость АВС нижнего основания

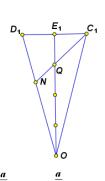
пересекаются по прямой l, проходящей через точку D и параллельной прямой F_1C_1 . Если \overline{C}_1

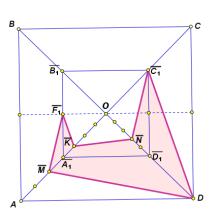


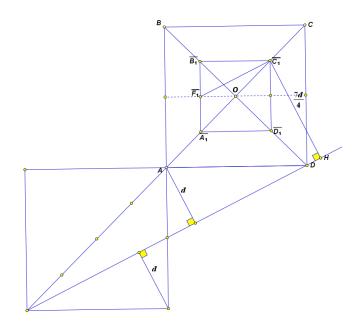
— высота треугольника
$$AED$$
, то $\bar{C}_1H=\frac{7d}{4}=\frac{7a^2}{8\sqrt{a^2+a^2/4}}=\frac{7a}{4\sqrt{5}}=\frac{14}{\sqrt{5}}.$

Угол \bar{C}_1HC_1 равен φ - углу между плоскостью сечения и плоскостью основания.









$$\operatorname{tg} \varphi = \frac{h}{\overline{C}_1 H} = \frac{8\sqrt{2/5} \cdot \sqrt{5}}{14} = \frac{4\sqrt{2}}{7}, \quad \cos \varphi = \frac{1}{\sqrt{1 + \operatorname{tg}^2 \varphi}} = \frac{7}{9}.$$

$$S_{ceq} = \frac{S_{np}}{\cos \varphi} = \frac{469 \cdot 9}{30 \cdot 7} = 20,1.$$

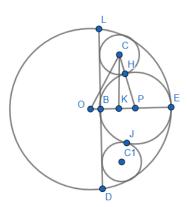
Ответ: 20,1.

6. Сотовая связь — это целый мир возможностей. Но чтобы пользоваться ими, нужно быть в зоне действия базовой станции. Сети GSM (2G) имеют мощность, которая позволяет покрывать территорию радиусом до 35 километров на открытой местности. В городских условиях, где много зданий, зона приема сигнала значительно уменьшается. Сети 3G и 4G (LTE) работают на более высоких частотах, чем сети 2G, и их сигнал хуже проникает сквозь препятствия и больше подвержен помехам. В сетях GSM было достаточно нескольких вышек, чтобы покрывать большие территории, а для 3G и 4G сетей для обеспечения надежной связи требуется больше вышек.

В городе установлен ретранслятор GSM сети, который обеспечивает покрытие в пределах окружности радиусом R=10 км. Центр окружности — основание вышки. Однако изза особенностей рельефа зона покрытия этого ретранслятора ограничена хордой, проведенной внутри этой окружности. Хорда находится на расстоянии d=2 км от центра окружности.

В меньшем сегменте, образованном хордой, необходимо установить три дополнительных ретранслятора (3G вышки) с круговыми зонами покрытия так, чтобы две зоны имели одинаковый радиус и касались третьей зоны, а также чтобы все три зоны касались хорды и основной окружности.

Найдите радиусы зон покрытия трех дополнительных ретрансляторов, которые нужно установить в меньшем сегменте. Определите площадь части меньшего сегмента, которая не попадает в зону действия дополнительных ретрансляторов. (20 баллов)



Решение. Пусть две 3G вышки имеют одинаковый радиус действия r. Третья - r_l . Радиус основной окружности R, расстояние от центра большой окружности до хорды - d. Т.к. один вписанный круг должен иметь максимальный из возможных радиусов, то его диаметр должен совпадать с высотой сегмента, а радиус будет равен половине высоты сегмента, два других круга могут располагаться только симметрично справа и слева от первого круга. Ведем точки, как показано на чертеже: О — центр большой окружности, C, Cl — центры маленьких окружностей, P — центр большей из

вписанных. H, J — точки касания маленьких окружностей с большей из вписанных. B — точка касания средней окружности с хордой. OB=d — заданное расстояние от центра до хорды.

$$CK \perp OP$$
, $OP \cap O\kappa p(O, R) = E$, $CK = x$.

$$OC = R - r$$
, $BK = r$, $OP = d + r$, $CP = r + r$, $KP = r$, $r \Rightarrow$

$$\triangle OCK$$
: $(R-r)^2 = x^2 + (d+r)^2 \implies x^2 = (R^2 - d^2) - 2r(d+R),$

$$\triangle PCK$$
: $(r_1 + r)^2 = x^2 + (r_1 - r)^2 \implies x^2 = 4r \cdot r_1$.

Т.к. вписанный круг должен иметь максимальный из возможных радиусов, то радиус будет равен половине высоты сегмента: $r_1 = \frac{R-d}{2} = \frac{10-2}{2} = 4$. С учетом этого получим

$$(R^2 - d^2) - 2r(d+R) = 4r \cdot r_1 \implies (R^2 - d^2) - 2r(d+R) = 2r(R-d) \implies r = \frac{R^2 - d^2}{4R} = \frac{96}{4 \cdot 10} = 2,4$$

Подсчитаем площадь части сегмента, которая не попадает в зону действия ретрансляторов 3G. Пусть $\angle LOB = \alpha$, $S_c = S_{cermenma}$.

$$\cos \alpha = \frac{OB}{OL} = \frac{d}{R} \implies \sin \alpha = \sqrt{1 - \left(\frac{d}{R}\right)^2} \implies \sin 2\alpha = 2\frac{d}{R}\sqrt{1 - \left(\frac{d}{R}\right)^2}$$

$$S = S_c - 2S_{\kappa} - S_{\kappa 1} = \frac{1}{2}R^2(2\alpha - \sin 2\alpha) - 2\pi r^2 - \pi r_1^2 = \frac{1}{2}R^2(2\alpha - 2\frac{d}{R}\sqrt{1 - \left(\frac{d}{R}\right)^2}) - 2\pi r^2 - \pi r_1^2$$

Подставим значения R=10, d=2, тогда

$$\cos \alpha = \frac{1}{5}$$
, $\sin \alpha = \frac{2\sqrt{6}}{5}$, $\alpha = \arccos \frac{1}{5}$, $S = \frac{1}{2} \cdot 10^2 (2\arccos \frac{1}{5} - 2 \cdot \frac{1}{5} \cdot \frac{2\sqrt{6}}{5}) - 2\pi \cdot 2, 4^2 - \pi \cdot 4^2$

$$S = 50(2\arccos\frac{1}{5} - \frac{4\sqrt{6}}{25}) - 11,52\pi - \pi \cdot 16 = 100\arccos\frac{1}{5} - 8\sqrt{6} - 27,52\pi$$

Ответ: 2,4 км, 4 км, 2,4 км, $S = 100 \arccos \frac{1}{5} - 8\sqrt{6} - 27,52\pi$.

Критерии оценивания олимпиадной работы

Профиль: Математика **Предмет:** Математика

Класс: 11

Задание 1 максимальная оценка: 12 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	12
Все рассуждения верные, сформулированные утверждения строго обоснованы. Допущена одна арифметическая ошибка.	9
Имеются верные шаги при решении полученной системы, из которой можно выразить нужное значение.	6
Задача сведена к системе, из которой можно выразить нужное значение.	0
Решение не соответствует ни одному из критериев, перечисленных выше.	3

Задание 2 максимальная оценка: 16 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	16
Все рассуждения верные, представленные формулы строго обоснованы. Допущена одна арифметическая ошибка.	12
Правильно вычислено число перестановок, содержащих слово ТОМ и ПОТ, при этом правильно вычислено число всех перестановок.	8
Правильно вычислено число всех перестановок.	4
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Задание 3 максимальная оценка: 16 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получены все верные обоснованные ответы.	16
Все рассуждения верные, представленные формулы строго обоснованы, все нужные ответы получены точно. Допущена одна арифметическая ошибка.	12
Обоснованно получено верное отношение : АККСи вычислена длина отрезка ВК или DF.	8
Правильно вычислены все стороны треугольника АВС.	4
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Задание 4 максимальная оценка: 16 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	16
Для одного или двух из промежутков параметра неверно выписаны решения, при этом остальные значения параметра и соответствующие решения найдены верно и все утверждения обоснованы.	12
Для не менее четырёх промежутков значений параметра правильно выписаны решения системы, все приведенные при этом утверждения обоснованы.	8
Верно выписаны все необходимые ограничения на х и а. Имеется существенное продвижение в решении задачи. Верно найдены один из промежутков значений параметра и соответствующие решения системы.	4
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Задание 5 максимальная оценка: 20 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	20
Все рассуждения верные, представленные формулы строго обоснованы, все нужные ответы получены. Допущена одна арифметическая ошибка.	15
При условии, что найдены все отношения, в которых плоскость сечения делит соответствующие ребра многогранника, верно найдена площадь проекции сечения на плоскость основания, или найден косинус угла между плоскостью сечения и плоскостью основания.	10
Полностью описано построение сечения многогранника. Найдены отношения, в которых плоскость сечения делит соответствующие ребра многогранника.	5
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Задание 6 максимальная оценка: 20 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный ответ, все утверждения обоснованы.	20
Сделаны незначительные вычислительные ошибки. Сделан верный рисунок, с указанием точек касания. Правильно указаны и найдены все расстояния. Найдены площади кругов, площадь сегмента, но в ходе вычислений допущены арифметические ошибки.	15
Полностью описана математическая модель. Сделан верный рисунок, с указанием точек касания. Описаны все расстояния, указаны треугольники, которые необходимо рассмотреть, найдены длины сторон треугольников. Найдены верно площади кругов. Указаны подходы к нахождению площади сегмента: выписана формула, и/или верно найден угол.	10
Математическая модель описана частично. Сделан верный рисунок, с указанием точек касания, обозначением данного в условии расстояния. Найдены радиусы зон покрытия.	5
Решение не соответствует ни одному из критериев, перечисленных выше.	0