

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Профиль олимпиады: «Математика»

Класс участия: 10

Вариант задания: 2

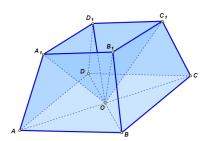
Задача 1 (12 *баллов*). Пусть a, b, c – корни многочлена $P(x) = x^3 + x^2 - 4x - 2$. Найдите $a^2b^2 + a^2c^2 + b^2c^2$.

Задача 2 (16 *баллов*). Даны 5 карточек с буквами П, И, Р, О, Г и ещё n карточек с буквой А. Найдите все n, при которых вероятность того, что из 4 случайно выбранных карточек будет можно сложить слово ПАРА, получится максимальной.

Задача 3 (16 *баллов*). Четырехугольник ABCD со сторонами AB=4,5, BC=6, CD=9 и AD=3 вписан в окружность. Прямые AB и CD пересекаются в точке E, а прямые BC и AD пересекаются в точке F. Биссектриса угла CFD пересекает стороны AB и CD в точках E и E соответственно, а биссектриса угла E пересекает стороны E и E в точках E и E и площадь четырехугольника E и E и площадь четырехугольника E

Задача 4 (16 *баллов*). Найдите все значения параметра a, при которых система $\begin{cases} |x+1-a|+|y-a-2|+|a-x|+|a-y+3| \leq 2, \\ y+2|x^2-4|=8, \end{cases}$ имеет единственное решение.

Задача 5 (20 *баллов*). В правильной усеченной четырехугольной пирамиде $ABCDA_1B_1C_1D_1$ сторона нижнего основания ABCD равна 48, верхнего основания $A_1B_1C_1D_1$ равна 8, точка O – центр основания ABCD. Поверхность многогранника Φ состоит из квадрата ABCD, боковых граней пирамиды $ABCDA_1B_1C_1D_1$ и боковых граней



пирамиды $OA_1B_1C_1D_1$. Найдите площадь сечения многогранника Φ плоскостью, содержащей прямые AB и C_1D_1 , если расстояние от точки C до плоскости сечения равно $64\sqrt{2}/3$.

Задача 6 (20 баллов). См. на обороте листа.

Задача 6 (20 *баллов*). Дизайнер спроектировал офисное помещение с основанием в виде прямоугольного треугольника *ABC*, с гипотенузой *AB*. С помощью потолочного освещения помещение разбито на зоны следующим образом: большой светильник Р освещает площадь S, ограниченную окружностью, которая вписана в треугольник *ABC*. Если к этой окружности провести внутри треугольника *ABC* касательные, параллельные сторонам комнаты, то получатся еще три треугольника при вершинах *A*, *B* и *C*, в которые можно вписать маленькие окружности, ограничивающие площади S_A , S_B , S_C . Эти площади освещаются дополнительными светильниками P_A , P_B , P_C .

Найдите, радиусы всех окружностей и освещенность каждой зоны, если периметр треугольника равен $P_{ABC}=90~{\rm M}$, гипотенуза $AB=39~{\rm M}$, величина угла BAC меньше величины угла CBA, а показатели световой отдачи (яркости) светильника $P_{\rm C}=1440~{\rm MM}$.

Освещенность E_x площади S_x светильником P_x с показателем световой отдачи F_x рассчитывается по формуле $E_x = \frac{1}{2} \cdot \frac{F_x}{S_x}$ (лк), где ½ - поправочный коэффициент, лк – люкс,

лм – люмен.

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Решение заданий

Профиль: Математика

Класс: 10 Вариант: 2

1. Пусть a, b, c — корни многочлена $P(x) = x^3 + x^2 - 4x - 2$. Найдите $a^2b^2 + a^2c^2 + b^2c^2$. (12 баллов)

Решение. Многочлен P(x) имеет три различных действительных корня, так как P(-10) < 0, P(-1) > 0, P(0) < 0, P(10) > 0.

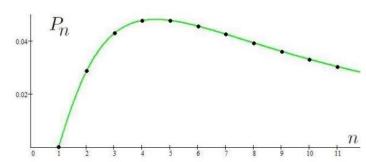
$$P(x)(-P(x)) = (x^3 + x^2 - 4x - 2)(x^3 - x^2 - 4x + 2) = (x^3 - 4x)^2 - (x^2 - 2)^2 =$$

$$= (x^6 - 8x^4 + 16x^2) - (x^4 - 4x^2 + 4) = x^6 - 9x^4 + 20x^2 - 4 = Q(x^2).$$

Многочлен $Q(y) = y^3 - 9y^2 + 20y - 4$ имеет корни a^2 , b^2 , c^2 . По теореме Виета $a^2b^2 + a^2c^2 + b^2c^2 = 20$. Ответ: 20.

Решение. Имеем $N=C_{n+5}^4$ равновероятных способов выбрать 4 карточки, из них благоприятных $M=C_n^2$ (надо вытащить две из n букв A и единственные Π и ${\bf P}$).

$$P_n = \frac{M}{N} = \frac{C_n^2}{C_{n+5}^4} = \frac{n(n-1)/2!}{(n+5)(n+4)(n+3)(n+2)/4!} = \frac{12(n-1)n}{(n+2)(n+3)(n+4)(n+5)}.$$



 $P_1 = 0 < P_2 = 1/35$. Выясним, после какого n вероятность начнёт убывать.

$$P_{n+1} - P_n = \frac{12n(n+1)}{(n+3)(n+4)(n+5)(n+6)} - \frac{12(n-1)n}{(n+2)(n+3)(n+4)(n+5)} =$$

$$= \frac{12n}{(n+2)(n+3)(n+4)(n+5)(n+6)} \cdot \left((n+1)(n+2) - (n-1)(n+6) \right) \le 0$$

$$(n^2 + 3n + 2) - (n^2 + 5n - 6) \le 0$$

$$-2n + 8 \le 0$$

$$n \ge 4.$$

Максимальная вероятность 1/21 получится при n=4 и n=5.

Ответ: 4, 5.

3. Четырехугольник *ABCD* со сторонами AB = 4,5, BC = 6, CD = 9 и AD = 3 вписан в окружность. Прямые AB и CD пересекаются в точке E, а прямые BC и AD пересекаются в точке F. Биссектриса угла CFD пересекает стороны AB и CD в точках K и Lсоответственно, а биссектриса угла BEC пересекает стороны AD и BC в точках M и Nсоответственно. Найдите длину отрезка *EF* и площадь четырехугольника *KMLN*. (16 баллов)

Класс: 10

Решение. Докажем, что биссектрисы FL и ENпересекаются под прямым углом. Пусть O точка пересечения биссектрис FL и EN. Введем обозначения: $\angle CFD = 2\alpha$, $\angle BEC = 2\beta$, $\angle AMO = \beta + \gamma$. $\angle BCD = \gamma$. Тогда треугольнике FOM имеем

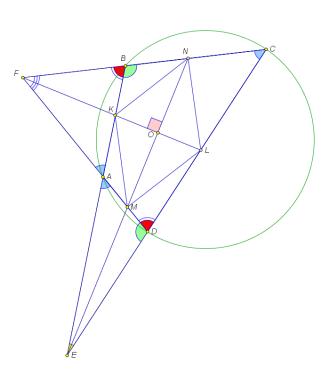
$$\angle MOF = 180^{\circ} - \alpha - (\beta + \gamma) = 180^{\circ} - (\alpha + \beta + \gamma).$$

В треугольнике СДГ имеем

$$\angle DCF + \angle CFD + \angle CDF = 180^{\circ}$$
,

$$\gamma + 2\alpha + (\gamma + 2\beta) = 180^{\circ}, \quad \alpha + \beta + \gamma = 90^{\circ}.$$

Следовательно, $\angle MOF = 90^{\circ}$. Треугольник MFN является равнобедренным (FO является высотой и биссектрисой, следовательно, и медианой), MO = ON. Аналогично, треугольник *KEL* является равнобедренным, KO = OL. Следовательно, четырехугольник



KMLN является ромбом, и его площадь $S_{\mathit{KMLN}} = \frac{\mathit{KL} \cdot \mathit{MN}}{2}$.

углам, и $\frac{FB}{FD} = \frac{FA}{FC} = \frac{AB}{CD}$, **AFB** и *CFD* подобны по двум Треугольники

$$\frac{FB}{FA+AD} = \frac{FA}{FB+BC} = \frac{1}{2}, \qquad 2FB = FA+3, \quad 2FA = FB+6 \Rightarrow \qquad FB=4, \quad FA=5 \Rightarrow$$

$$AK=rac{5}{2},\quad KB=2$$
 . Тогда $FK=\sqrt{FA\cdot FB-AK\cdot KB}=\sqrt{20-5}=\sqrt{15}.$ Поскольку $FL=2FK$, то

 $KL = \sqrt{15}$, $FO = \frac{3\sqrt{15}}{2}$. Аналогично, треугольники *AED* и *CEB* подобны по двум углам, и

$$\frac{EA}{EC} = \frac{ED}{EB} = \frac{AD}{BC}, \qquad \frac{EA}{ED + CD} = \frac{ED}{EA + AB} = \frac{1}{2}, \qquad 2EA = ED + 9, \quad 2ED = EA + 4,5 \Rightarrow$$

$$EA = 7, 5, ED = 6 \Rightarrow AM = \frac{5}{3}, \quad MD = \frac{4}{3}.$$
 Тогда $EM = \sqrt{EA \cdot ED - AM \cdot MD} = \sqrt{45 - \frac{20}{9}} = \frac{\sqrt{385}}{3}.$

Поскольку
$$EN = 2EM$$
, то $MN = \frac{\sqrt{385}}{3}$, $EO = \frac{\sqrt{385}}{2}$. $EF = \sqrt{EO^2 + FO^2} = \frac{\sqrt{520}}{2} = \sqrt{130}$.

$$S_{KMLN} = \frac{KL \cdot MN}{2} = \frac{\sqrt{15}}{2} \cdot \frac{\sqrt{385}}{3} = \frac{5\sqrt{231}}{6}.$$
 Other: $\sqrt{130}$, $\frac{5\sqrt{231}}{6}$.

4. Найдите все значения параметра а, при которых система

$$\begin{cases} |x+1-a|+|y-a-2|+|a-x|+|a-y+3| \le 2, \\ y+2|x^2-4| = 8, \end{cases}$$
имеет единственное решение. (16 баллов)

Класс: 10

Решение:

Отметим, что при каждом значении параметра a неравенство $|t-a|+|a-t+1| \ge 1$ верно при любых $t \in (-\infty; \infty)$, причем равенство выполняется всех $t \in [a; a+1]$. Действительно,

Следовательно, при каждом значении параметра a при любых x и y справедливо неравенство $|(x+1)-a|+|(y-2)-a|+|a-(x+1)+1|+|a-(y-2)+1|\geq 2$. Таким образом, неравенство в системе из условия задачи превращается в равенство, которое верно только в том случае, если |x+1-a|+|a-x|=1 и |y-2-a|+|a-y+3|=1, что, в свою очередь, выполняется, если $a\leq x\leq a+1$ и $a\leq y\leq a+1$. Исходная система эквивалентна следующей системе

$$\begin{cases} a \le x + 1 \le a + 1, \\ a \le y - 2 \le a + 1, \iff \begin{cases} a - 1 \le x \le a, \\ a + 2 \le 8 - 2 \mid x^2 - 4 \mid \le a + 3, \end{cases} \\ y = 8 - 2 \mid x^2 - 4 \mid. \end{cases}$$

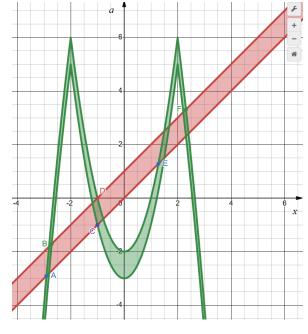
В системе координат Oax построим решение неравенств $a-1 \le x \le a$ и $a \le 6-2 \mid x^2-4 \mid \le a+1$. Для первого неравенства получим полосу, заключенную между двумя прямыми a=x+1 и a=x. Решение второго неравенства будет множество точек, лежащих между двумя кривыми $a=6-2 \mid x^2-4 \mid$ и $a=5-2 \mid x^2-4 \mid$.

Решение системы будет единственным в тех случаях, когда прямая, параллельная оси Ox, пересекает множество решений системы

$$\begin{cases} a-1 \le x \le a, \\ a \le 6-2 \mid x^2-4 \mid \le a+1, \end{cases}$$
 в одной точке. Нужные

точки A, B, C, D, E, F (см. рис.). Найдем точки пересечения прямых a = x и a = x + 1 с кривыми $a = 6 - 2 \mid x^2 - 4 \mid$ и $a = 5 - 2 \mid x^2 - 4 \mid$.

1)
$$\begin{cases} a = 6 - 2 |x^2 - 4|, \Leftrightarrow \\ a = x \end{cases}$$



$$\begin{cases} x \in (-\infty; -2) \cup (2; +\infty), \\ 2x^2 + x - 14 = 0, \\ x \in [-2; 2], \\ 2x^2 - x - 2 = 0, \end{cases} \Leftrightarrow \begin{cases} a = x, \\ x = \frac{-1 \pm \sqrt{113}}{4}, \text{ 3десь нужны точки } A\left(\frac{-1 - \sqrt{113}}{4}; \frac{-1 - \sqrt{113}}{4}\right) \text{ и} \\ x = \frac{1 \pm \sqrt{17}}{4}. \end{cases}$$

точка C(-1;-1).

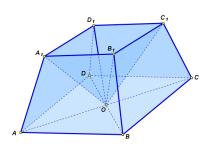
3)
$$\begin{cases} a = 6 - 2 \mid x^2 - 4 \mid, \Leftrightarrow \\ a = x + 1, \end{cases}$$

$$\begin{cases} a = x + 1, \\ \begin{cases} x \in (-\infty; -2) \cup (2; +\infty), \\ 2x^2 + x - 13 = 0, \\ \begin{cases} x \in [-2; 2], \\ 2x^2 - x - 3 = 0, \end{cases} \end{cases} \Leftrightarrow \begin{cases} a = x + 1, \\ x = \frac{-1 \pm \sqrt{105}}{4}, \quad \text{3десь нужны точки } D(-1; 0) \quad \text{и} \\ x = -1, \quad x = 1, 5. \end{cases}$$

$$F\left(\frac{-1 + \sqrt{105}}{4}; \frac{3 + \sqrt{105}}{4}\right).$$

Otbet: $\frac{-1-\sqrt{113}}{4}$; $\frac{3-\sqrt{97}}{4}$; -1; 0; $\frac{1+\sqrt{17}}{4}$; $\frac{3+\sqrt{105}}{4}$

5. В правильной усеченной четырехугольной пирамиде $ABCDA_1B_1C_1D_1$ сторона нижнего основания ABCD равна 48, верхнего основания $A_1B_1C_1D_1$ равна 8, точка O — центр основания ABCD. Поверхность многогранника Φ состоит из квадрата ABCD, боковых граней пирамиды $ABCDA_1B_1C_1D_1$ и боковых граней пирамиды $OA_1B_1C_1D_1$. Найдите площадь сечения многогранника Φ плоскостью, содержащей прямые



AB и C_1D_1 , если расстояние от точки C до плоскости сечения равно $64\sqrt{2}/3$. (20 баллов)

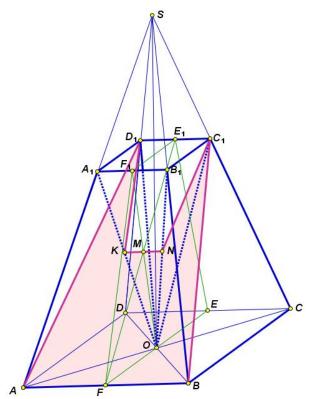
Класс: 10

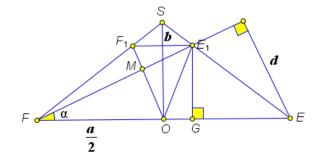
Решение.

Пусть a = AB = 48, $b = A_1B_1 = 8$, расстояние от точки C до плоскости сечения обозначим d, $d = 64\sqrt{2}/3$.

Построим сечение многогранника Достроим усеченную пирамиду $ABCDA_{1}B_{1}C_{1}D_{1}$ до пирамиды SABCD, продолжив ребра AA_1 , BB_1 , CC_1 , DD_1 . Пусть точки F и F_1 - середины AB и A_1B_1 соответственно, E и $E_{\scriptscriptstyle 1}$ - середины CD и C_1D_1 соответственно. Прямая FE_1 принадлежит плоскости сечения. Найдем точку М пересечения этой прямой с гранью OA_1B_1 . Эта точка лежит на прямой OF_1 .

Треугольники F_1ME_1 и OMF подобны, и $\frac{F_1M}{MO} = \frac{E_1M}{MF} = \frac{2b}{a} = \frac{1}{3}$. Через точку M в плоскости OA_1B_1 проведем прямую $KN \parallel A_1B_1$, $K \in OA_1$, $N \in OB_1$. Сечением многогранника Φ будет многоугольник ABC_1NKD_1 . Его площадь равна разности площадей трапеций ABC_1D_1 и C_1NKD_1 . Высотой трапеции ABC_1D_1 является отрезок FE_1 , а трапеции C_1NKD_1 - отрезок ME_1 . $\frac{ME_1}{FE_1} = \frac{1}{4}$.





Обозначим $\alpha = \angle E_1 F E$. Тогда $\sin \alpha = \frac{d}{F E} = \frac{d}{a} = \frac{4\sqrt{2}}{9}$. Пусть $E_1 G \perp F E$, $G \in F E$. Тогда $\frac{G E}{O E} = \frac{G E_1}{S O} = \frac{a - b}{a} = \frac{5}{6} \Rightarrow F G = \frac{7}{6} F O = 28 \Rightarrow F E_1 = \frac{F G}{\cos \alpha} = \frac{28}{\sqrt{1 - \frac{32}{81}}} = 36, M E_1 = 9.$

Треугольники OKN и OA_1B_1 подобны, и $\frac{KN}{A_1B_1} = \frac{OM}{OF_1} = \frac{3}{4}$, KN = 6.

$$S_{ABC_1D_1} = \frac{AB + C_1D_1}{2} \cdot FE_1 = \frac{48 + 8}{2} \cdot 36 = 1008, \quad S_{C_1NKD_1} = \frac{NK + C_1D_1}{2} \cdot ME_1 = \frac{6 + 8}{2} \cdot 9 = 63,$$

$$S_{cey} = 1008 - 63 = 945.$$

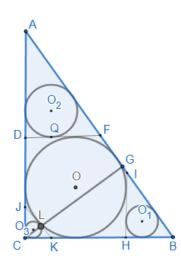
Ответ: 945.

6. Дизайнер спроектировал офисное помещение с основанием в виде прямоугольного треугольника ABC, с гипотенузой AB. С помощью потолочного освещения помещение разбито на зоны следующим образом: большой светильник P освещает площадь S, ограниченную окружностью, которая вписана в треугольник ABC. Если к этой окружности провести внутри треугольника ABC касательные, параллельные сторонам комнаты, то получатся еще три треугольника при вершинах A, B и C, в которые можно вписать маленькие окружности, ограничивающие площади S_A , S_B , S_C . Эти площади освещаются дополнительными светильниками P_A , P_B , P_C .

Найдите, радиусы всех окружностей и освещенность каждой зоны, если периметр треугольника равен $P_{ABC}=90$ м, гипотенуза AB=39 м, величина угла BAC меньше величины угла CBA, а показатели световой отдачи (яркости) светильника Р составляет 51840 лм, светильника $P_A=40192$ лм, светильника $P_B=3600$ лм и светильника $P_C=1440$ лм.

Освещенность E_x площади S_x светильником P_x с показателем световой отдачи F_x рассчитывается по формуле $E_x = \frac{1}{2} \cdot \frac{F_x}{S_x}$ (лк), где ½ - поправочный коэффициент, лк – люкс, лм – люмен. (20 баллов).

катетов треугольника и радиус R:



Решение. В треугольник ABC вписана окружность с центром в точке O, радиус обозначим R, $HI \parallel AC$, $DF \parallel CB$, $JK \parallel AB$, $CG \perp AB$, $CG \cap JK = L$. Центры вписанных маленьких окружностей O_1 , O_2 , O_3 , радиусы r_B , r_A , r_C , площадь большого круга $S = \pi R^2$, где радиус может быть подсчитан по формуле $R = \frac{S_{ABC}}{p}$, здесь полупериметр вычисляется по формуле $p = \frac{a+b+c}{2} = \frac{P_{ABC}}{2}$, площадь треугольника $S_{ABC} = \frac{1}{2} a \cdot b$. Здесь a,b – катеты треугольника ABC, c – гипотенуза. Найдем длины

$$\begin{cases} \sqrt{a^2 + b^2} = c \\ a + b + c = P_{ABC} \end{cases} \Rightarrow \Rightarrow \begin{cases} a^2 + b^2 = c^2 \\ a + b = P_{ABC} - c \end{cases} \Rightarrow$$

$$2b^{2} - 2b(P_{ABC} - c) + (P_{ABC} - c)^{2} - c^{2} = 0 \quad b = \frac{P_{ABC} - c \pm \sqrt{2c^{2} - (P_{ABC} - c)^{2}}}{2} = \begin{bmatrix} \frac{51 + 21}{2} = 36\\ \frac{51 - 21}{2} = 15 \end{bmatrix}$$

Напротив меньшего угла лежит меньшая сторона, поэтому CB=15, AC=36. Тогда площадь

$$S_{ABC} = \frac{1}{2} \, a \cdot b = 270$$
 . И радиус равен $\, R = \frac{2 S_{ABC}}{P_{ABC}} = \frac{2 \cdot 270}{90} = 6, \,$

Напротив меньшего угла лежит меньшая сторона, поэтому *CB*=16, AC=30. Полученные маленькие треугольники подобны большому треугольнику, т.к. стороны параллельны. Расстояние между проведенными параллельными прямыми и соответствующими им сторонами равно диаметру большого круга. Поэтому

$$\frac{r_B}{R} = \frac{BH}{BC} = \frac{BC - 2R}{BC}, \ \frac{r_A}{R} = \frac{AD}{AC} = \frac{AC - 2R}{AC}, \ \frac{r_C}{R} = \frac{CL}{CG} = \frac{CG - 2R}{CG}, \ CG = \frac{2S_{ABC}}{AB}.$$

Тогда радиусы равны:

$$r_B = R \frac{BC - 2R}{BC} = \frac{6}{5}, \quad r_A = R \frac{AC - 2R}{AC} = 4, \quad r_C = R \frac{CG - 2R}{CG} = \frac{4}{5}.$$

Площади кругов равны:

$$S_B = \pi (R \frac{BC - 2R}{BC})^2 = \pi \frac{36}{25}, \ S_A = \pi (R \frac{AC - 2R}{AC})^2 = \pi \cdot 16, \ S_C = \pi (R \frac{CG - 2R}{CG})^2 = \pi \frac{16}{25}.$$

Тогда освещенность:

$$E = \frac{F}{2S} = \frac{51840}{72\pi} = \frac{720}{\pi} \approx 229, \qquad E_B = \frac{F_B}{2S_B} = \frac{25 \cdot 3600}{72\pi} = \frac{1250}{\pi} \approx 398,$$

$$E_A = \frac{F_A}{2S_A} = \frac{40192}{32\pi} = \frac{1256}{\pi} \approx 400, \qquad E_C = \frac{F_C}{2S_C} = \frac{25 \cdot 1440}{32\pi} = \frac{1125}{\pi} \approx 358$$

Критерии оценивания олимпиадной работы

Профиль: Математика **Предмет:** Математика

Класс: 10

Задание 1 максимальная оценка: 12 баллов

2-Hanne	
Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	12
Все рассуждения верные, сформулированные утверждения строго обоснованы. Допущена одна арифметическая ошибка.	9
Верными преобразованиями задача приведена к использованию обобщенной теоремы Виета.	6
Задача сведена к исследованию корней многочлена с четными степенями.	0
Решение не соответствует ни одному из критериев, перечисленных выше.	3

Задание 2 максимальная оценка: 16 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	16
Все рассуждения верные, представленные формулы строго обоснованы. Допущена одна арифметическая ошибка.	12
Подстановкой в верную формулу нескольких начальных значений n получен верный ответ, но полного обоснования, что нет других решений нет.	8
Правильно составлена формула для вычисления вероятности события, сформулированного в условии задачи.	4
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Задание 3 максимальная оценка: 16 баллов

Make/Mahbitan eqeima. 19 9	
Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получены все верные обоснованные ответы.	16
Все рассуждения верные, представленные формулы строго обоснованы, все нужные ответы получены точно. Допущена одна арифметическая ошибка.	12
Обоснованно получен верное значение площади четырехугольника KMLN или длины отрезка EF.	8
Доказано, что четырехугольник KMLN является ромбом.	4
Решение не соответствует ни одному из критериев, перечисленных выше.	0

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Задание 4 максимальная оценка: 16 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	16
Потеряно или вычислено с арифметической ошибкой одно из значений параметра, при этом остальные значения найдены верно и все утверждения обоснованы.	12
Верно найдены не менее трёх значений параметра, все приведенные при этом утверждения обоснованы.	8
Система сведена к более простой, найдены два верных значения параметра.	4
Решение не соответствует ни одному из критериев, перечисленных выше	0

Задание 5 максимальная оценка: 20 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный обоснованный ответ.	20
Все рассуждения верные, представленные формулы строго обоснованы, все нужные ответы получены. Допущена одна арифметическая ошибка.	15
При условии, что найдены все отношения, в которых плоскость сечения делит соответствующие ребра многогранника, выписаны формулы для нахождения площади сечения многогранника и вычислены высоты трапеций.	10
Полностью описано построение сечения многогранника. Найдены отношения, в которых плоскость сечения делит соответствующие ребра многогранника.	5
Решение не соответствует ни одному из критериев, перечисленных выше	0

Задание 6 максимальная оценка: 20 баллов

Критерий (учитывается балл, полученный за выполненный критерий)	Балл
Задача решена полностью, получен верный ответ, все утверждения обоснованы.	20
Сделан верный рисунок с проведенными касательными. Найдены верно длины катетов треугольника ABC и радиус вписанной в него окружности. Указаны коэффициенты подобия треугольников. Найдены радиусы всех 3 окружностей, вписанных в меньшие треугольники. Найдены площади всех кругов. Найдена освещенность каждой зоны. Сделаны незначительные вычислительные ошибки.	15
Полностью описана математическая модель. Сделан верный рисунок с проведенными касательными. Дано пояснение, какие треугольники будут рассматриваться, найдены длины катетов треугольника АВС и радиус вписанной в него окружности. Указано подобие треугольников и найдены коэффициенты подобия. Найдены радиусы всех 3 окружностей, вписанных в меньшие треугольники. Выписаны формулы для нахождения площади круга.	10
Математическая модель описана частично. Сделан верный рисунок с проведенными касательными. Дано пояснение, какие треугольники будут рассматриваться, найдены длины катетов треугольника АВС и радиус вписанной в него окружности.	5
Решение не соответствует ни одному из критериев, перечисленных выше.	0