

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Профиль: компьютерное моделирование и графика; тур по математике и инженерной графике

Вариант: 1 Класс: 10

Задача 1 (10 *баллов*). На шахматную доску, состоящую из 8×7 клеток, поставили двух белых коней. С какой вероятностью они будут находиться под защитой друг друга? (Конь ходит буквой « Γ », т.е. он может пойти на одно из полей, ближайших к тому, на котором он стоит, но не на той же самой горизонтали, вертикали или диагонали.)

Задача 2 (10 баллов). В остроугольный треугольник ABC со сторонами AB = 8, BC = 9,5 вписана окружность с центром в точке O, которая касается сторон BC и AB в точках M и N соответственно. На прямой MN отмечена точка K так, что угол OCK равен 60° . Найдите площадь четырехугольника BOCK, если площадь треугольника ABC равна $21\sqrt{3}$.

Задача 3 (12 *баллов*). Найдите все значения параметра a, при которых система неравенств $\begin{cases} x^2 + y^2 - 4x + 6y \le a^2 + 8a + 3, \\ 5x^2 + 5y^2 - 2(a+4)x + 2(2a+3)y \le -a^2 - 4a \end{cases}$ не имеет решений.

Задача 4 (10 баллов). См. лист 2

Задача 5 (8 баллов). Основанием наклонного конуса (см. условие задачи 4) является круг с центром в точке O и диаметром 90 mm . Пирамида SABC , основанием которой является равносторонний треугольник ABC со стороной 75 mm , и конус имеют общую вершину S. Плоскость основания пирамиды параллельна плоскости основания конуса и выше ее на 30 mm , высота пирамиды равна 50 mm . Точки A', B', C', S' являются проекциями соответствующих вершин пирамиды на горизонтальную плоскость проекций, в которой лежит основание конуса. Точка S' лежит на высоте C'D' треугольника A'B'C'. Прямая OX перпендикулярна прямой S'B', угол между прямыми OX и A'C' составляет 20° , расстояние от точки A' до прямой OX равно 15 mm , $OA' = 5\sqrt{10} \mathit{mm}$. Найдите длину отрезка касательной, проведенной из точки S' к основанию конуса, и площадь объединенной фронтальной проекции двух фигур (см. условие задачи 5). (Указание: при расчетах считать $\cos 40^\circ = 0,8$.)

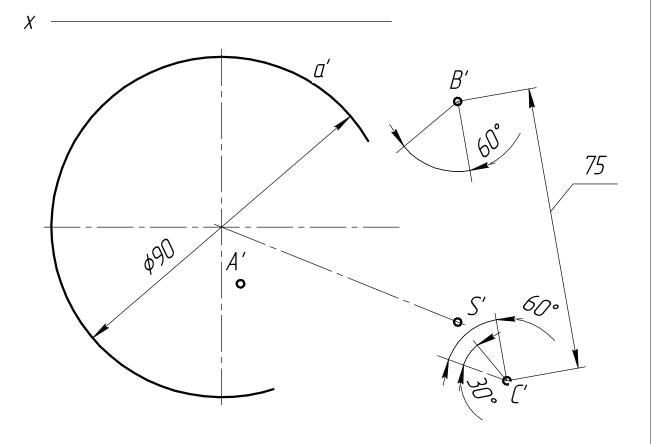
Задача 6 (20 *баллов*). См. лист 3.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Задача 4 (10 баллов). Даны горизонтальные проекции основания наклонного конуса a' и вершин основания пирамиды A'B'C'. Вершины фигур совпадают и расположены выше оснований. Плоскость основания конуса принадлежит горизонтальной плоскости проекций. Плоскость основания пирамиды параллельна плоскости основания конуса и выше ее на 30 мм. Высота пирамиды 50 мм. Требуется:

1) построить фронтальную и горизонтальную проекции двух фигур с соблюдением проекционной связи; 2) построить проекции линии пересечения фигур с обозначением вершин проекций и видимости линий; 3) оформить все изображения в соответствии с ЕСКД.



Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

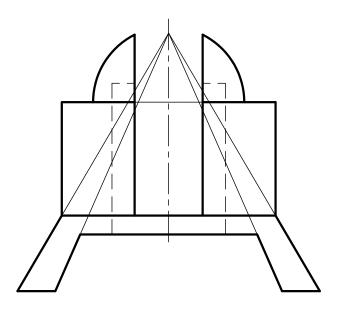
Задача 6 (20 баллов). Даны две проекции фигуры. Требцется:

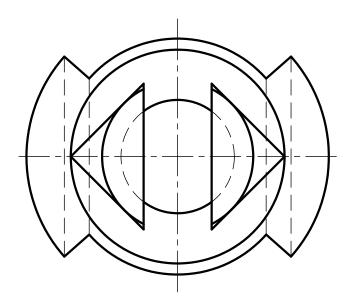
, 1) на месте вида слева оформить изображение как соединение части вида и части профильного разреза; 2) главный вид оформить как соединение части вида и части фронтального разреза;

3) все изображения оформить в соответствии с ЕСКД;

4) нанести размеры, причем их количество должно быть минимальное, но однозначно определяющее форму фигуры;

5) на видах сохранить линии невидимого контура, на разрезах линии невидимого контура не изображать.



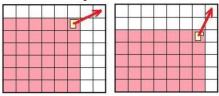


Решение варианта №1 (Математика - 10 класс)

1. На шахматную доску, состоящую из 8×7 клеток, поставили двух белых коней. С какой вероятностью они будут находиться под защитой друг друга? (Конь ходит буквой «Г», т.е. он может пойти на одно из полей, ближайших к тому, на котором он стоит, но не на той же самой горизонтали, вертикали или диагонали.) (10 баллов)

Решение:

Решение. Сосчитаем количество позиций, где тот белый конь, который стоит левее, защищает другого по каждому из 4 возможных векторов.



Чтобы защищать по вектору (2;1) (рис. слева), конь должен стоять на одной из $6 \cdot 6 = 36$ закрашенных клеток, при этом позиция другого коня определяется однозначно; аналогичная картина для вектора (2; -1).

Чтобы защищать по вектору (1;2) (рис. справа), конь должен стоять на одной из $7 \cdot 5 = 35$ закрашенных клеток, при этом позиция другого коня определяется однозначно; аналогичная картина для вектора (1;-2).

Вычислим вероятность, разделив число найденных позиций на число всех позиций двух одинаковых коней:

$$P = \frac{2 \cdot 36 + 2 \cdot 35}{C_{56}^2} = \frac{2 \cdot 71}{56 \cdot 55/2} = \frac{71}{14 \cdot 55}$$

Ответ: 71/770.

2. В остроугольный треугольник ABC со сторонами AB = 8, BC = 9,5 вписана окружность с центром в точке O, которая касается сторон BC и AB в точках M и N соответственно. На прямой MN отмечена точка K так, что угол OCK равен 60° . Найдите площадь четырехугольника BOCK, если площадь треугольника ABC равна $21\sqrt{3}$. (10 баллов)

Решение.

Используя формулу $S_{ABC} = \frac{1}{2}AB \cdot BC \sin \beta, \beta = \angle ABC$, найдем угол β : $21\sqrt{3} = \frac{19 \cdot 8}{4} \sin \beta$,

$$\sin \beta = \frac{21\sqrt{3}}{38}, \quad \cos \beta = \frac{11}{38}.$$

По теореме косинусов найдем сторону AC:

$$AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cos \beta = 64 + 361/4 - 44 = 441/4$$
, $AC = 10,5$. Используя формулу

$$S_{ABC} = \frac{1}{2}AB \cdot AC \sin \alpha, \alpha = \angle BAC,$$

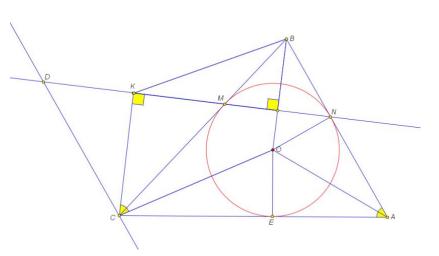
найдем угол α : $21\sqrt{3} = \frac{21 \cdot 8}{4} \sin \alpha$,

$$\sin \alpha = \frac{\sqrt{3}}{2}, \quad \alpha = 60^{\circ}.$$

подобные равнобедренные

Проведем прямую CD, $CD \square AB$, D - точка пересечения с прямой MN. Треугольники BMN и CMD -

треугольники. Если CK_1 - биссектриса



треугольника
$$MCD$$
 , то $\angle OCK_1 = \frac{\angle ABC + \angle ACB}{2} = 90^{\circ} - \frac{\angle BAC}{2} = 90^{\circ} - \frac{\alpha}{2} = 60^{\circ}$, и $K_1 = K$.

Найдем радиус окружности, вписанной в треугольник АВС:

$$S_{ABC}=21\sqrt{3},~~S_{ABC}=rac{P_{ABC}r}{2}=rac{(AB+BC+AC)r}{2}=14r,~~r=rac{3\sqrt{3}}{2}.$$
 Тогда $AN=r/ ext{tg}\,30^\circ=4,5,~~BN=BM=3,5,~~CM=6.$

Тогда
$$MN^2 = BM^2 + BN^2 - 2BM \cdot BN \cos \beta = \frac{49}{2} - \frac{49 \cdot 11}{76} = \frac{49 \cdot 27}{76}, MN = \frac{21\sqrt{3}}{2\sqrt{19}},$$

$$\frac{DM}{MN} = \frac{CM}{BM} = \frac{12}{7}$$
, $KM = \frac{DM}{2} = \frac{6MN}{7} = \frac{9\sqrt{3}}{\sqrt{19}}$. Четырехугольник *BOCK* – трапеция с высотой

$$h = KM + \frac{MN}{2} = \frac{19MN}{14} = \frac{3\sqrt{57}}{4}$$
. Найдем основания трапеции:

$$CK = \sqrt{CM^2 - KM^2} = \sqrt{36 - \frac{81 \cdot 3}{19}} = 3\sqrt{4 - \frac{27}{19}} = \frac{21}{\sqrt{19}}, \quad BO = \sqrt{r^2 + BN^2} = \frac{\sqrt{27 + 49}}{2} = \sqrt{19}.$$

$$S_{BOCK} = \frac{CK + BO}{2}h = \left(\frac{21}{\sqrt{19}} + \sqrt{19}\right) \cdot \frac{3\sqrt{57}}{8} = 15\sqrt{3}$$
. Otbet: $15\sqrt{3}$.

3. Найдите все значения параметра а, при которых система неравенств

$$\begin{cases} x^2 + y^2 - 4x + 6y \le a^2 + 8a + 3, \\ 5x^2 + 5y^2 - 2(a+4)x + 2(2a+3)y \le -a^2 - 4a \end{cases}$$
 не имеет решений. (16 баллов)

Решение:

Преобразуем первое неравенство системы

$$x^{2} + y^{2} - 4x + 6y \le a^{2} + 8a + 3 \Leftrightarrow (x - 2)^{2} + (y + 3)^{2} \le (a + 4)^{2}$$
.

Преобразуем второе неравенство системы

$$5x^2 + 5y^2 - 2(a+4)x + 2(2a+3)y \le -a^2 - 4a \Leftrightarrow$$

$$5\left(x^{2} - 2\left(\frac{a+4}{5}\right)x + \left(\frac{a+4}{5}\right)^{2}\right) - \frac{\left(a+4\right)^{2}}{5} + 5\left(y^{2} + 2\left(\frac{2a+3}{5}\right)y + \left(\frac{2a+3}{5}\right)^{2}\right) - \frac{\left(2a+3\right)^{2}}{5} \le -a^{2} - 4a \Leftrightarrow (a+4)^{2} + ($$

$$\left(x - \frac{a+4}{5}\right)^2 + \left(y + \frac{2a+3}{5}\right)^2 \le \frac{\left(a+4\right)^2 + \left(2a+3\right)^2 - 5a^2 - 20a}{25} \Leftrightarrow$$

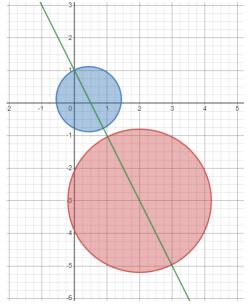
$$\left(x - \frac{a+4}{5}\right)^2 + \left(y + \frac{2a+3}{5}\right)^2 \le 1.$$

Приходим к системе неравенств

$$\begin{cases} (x-2)^2 + (y+3)^2 \le (a+4)^2, \\ \left(x - \frac{a+4}{5}\right)^2 + \left(y + \frac{2a+3}{5}\right)^2 \le 1. \end{cases}$$
 На плоскости *Оху*

решением первого неравенства является замкнутый круг с центром в точке A(2;-3) и радиусом $R_1=\left|a+4\right|$. Решением второго неравенства является замкнутый круг с центром в точке $B\left(\frac{a+4}{5};-\frac{2a+3}{5}\right)$ и радиусом $R_2=1$.

Точка B лежит на прямой y = -2x + 1. Точка A также лежит на этой прямой. Для того чтобы система не имела решений необходимо и достаточно, чтобы круги не пересекались, т.е. расстояние между точками A и B было больше суммы радиусов этих кругов. Приходим к неравенству



$$\left(2 - \frac{a+4}{5}\right)^{2} + \left(-3 + \frac{2a+3}{5}\right)^{2} > \left(|a+4|+1\right)^{2} \Leftrightarrow \left(a-6\right)^{2} + \left(2a-12\right)^{2} > 25\left(|a+4|+1\right)^{2} > 25\left(|a$$

$$5a^2 - 60a + 180 > 25(|a+4|+1)^2 \Leftrightarrow a^2 - 12a + 36 > 5(|a+4|+1)^2 \Leftrightarrow$$

$$(a-6)^2 - 5(|a+4|+1)^2 > 0.$$

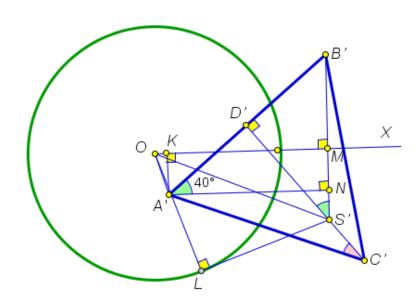
При
$$a < -4$$
 имеем $(a-6)^2 - 5(a+3)^2 > 0 \Leftrightarrow ((1-\sqrt{5})a-6-3\sqrt{5})((1+\sqrt{5})a-6+3\sqrt{5}) > 0$. С

учетом
$$a < -4$$
 получаем $a \in \left(-\frac{21 + 9\sqrt{5}}{4}; -4\right)$.

ВАРИАНТ 1 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ГРАФИКА -2024 10 класс При $a \ge -4$ имеем $(a-6)^2 - 5(a+5)^2 > 0 \Leftrightarrow \left(\left(1-\sqrt{5}\right)a - 6 - 5\sqrt{5}\right)\left(\left(1+\sqrt{5}\right)a - 6 + 5\sqrt{5}\right) > 0$. С учетом $a \ge -4$ получаем $a \in \left[-4; \frac{-31+11\sqrt{5}}{4}\right]$. Окончательно получаем $a \in \left(-\frac{21+9\sqrt{5}}{4}; \frac{-31+11\sqrt{5}}{4}\right)$. Ответ: $\left(-\frac{21+9\sqrt{5}}{4}; \frac{-31+11\sqrt{5}}{4}\right)$.

5. Основанием наклонного конуса (см. условие задачи 4) является круг с центром в точке O и диаметром 90 $\mathit{мм}$. Пирамида SABC , основанием которой является равносторонний треугольник ABC со стороной 75 mm , и конус имеют общую вершину S. Плоскость основания пирамиды параллельна плоскости основания конуса и выше ее на 30 mm , высота пирамиды равна 50 mm . Точки A', B', C', S' являются проекциями соответствующих вершин пирамиды на горизонтальную плоскость проекций, в которой лежит основание конуса. Точка S' лежит на высоте C'D' треугольника A'B'C'. Прямая OX перпендикулярна прямой S'B', угол между прямыми OX и A'C' составляет 20° , расстояние от точки A' до прямой OX равно 15 mm , $OA' = 5\sqrt{10}\,\mathit{mm}$. Найдите длину отрезка касательной, проведенной из точки S' к основанию конуса, и площадь объединенной фронтальной проекции двух фигур (см. условие задачи 4). (Указание: при расчетах считать $\cos 40^\circ = 0,8$.)

Решение:



 $A'N \square OX$, $N \in B'S'$, $\Delta A'NB'$ прямоугольный $\Rightarrow NB' = 75\sin 40^\circ = 45$. $\Delta D'S'B'$ прямоугольный $\Rightarrow S'B' = 75/(2\sin 40^\circ) = 62,5$. NS' = S'B' - NB' = 62,5 - 45 = 17,5.

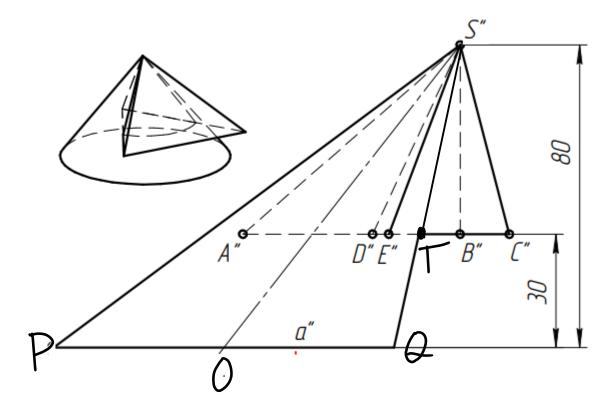
ВАРИАНТ 1 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ГРАФИКА -2024 10 класс

 $A'K \perp OX$, $K \in OX$, A'K = 15. $M = OX \cap B'S'$, MS' = 15 + 17, 5 = 32, 5.

$$A'N = 75\cos 40^{\circ} = 60$$
, $OK = 5$, $OM = 5 + 60 = 65$.

 $\Delta OMS'$ прямоугольный $\Rightarrow OS'^2 = OM^2 + MS'^2 = 65^2 + 32, 5^2 = 5281, 25.$ $\Delta OS'L$ прямоугольный $\Rightarrow LS'^2 = OS'^2 - OL^2 = 5281, 25 - 2025 = 3256, 25.$

$$LS'^2 = \frac{13025}{4} = \frac{25 \cdot 521}{4}, LS' = \frac{5\sqrt{521}}{2}.$$



$$S_{S''PQ} = \frac{90 \cdot 80}{2} = 3600,$$

$$B''C'' = 75\sin 10^\circ = 75\cos 80^\circ = 75(2\cos^2 40^\circ - 1) = 75\cdot 0, 28 = 21$$

$$TB'' = \frac{5}{8}(OM - 45) = \frac{5}{8}(65 - 45) = 12,5$$

$$TC'' = 12,5 + 21 = 33,5, \ S_{S''TC''} = \frac{33,5 \cdot 50}{2} = 837,5$$

$$S = S_{S''PO} + S_{S''TC''} == 3600 + 837,5 = 4437,5$$

Ответ:
$$\frac{5\sqrt{521}}{2}$$
 мм, 4437,5 мм²

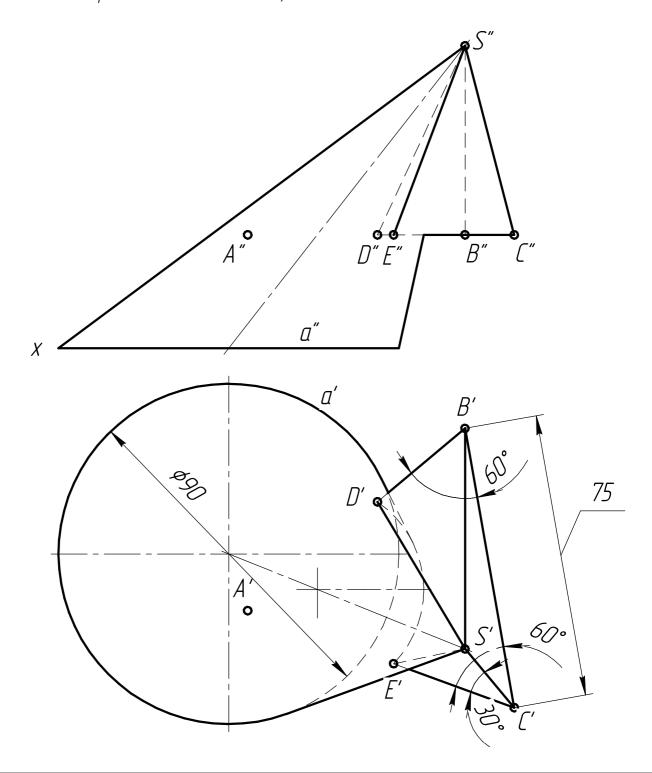
Профиль: Компьютерное моделирование и графика; тур по математике и инженерной графике. Вариант: 2 класс: 10–11

Задача 4a (10 баллов). Даны горизонтальные проекции основания наклонного конуса a' и вершин основания пирамиды A'B'C'. Вершины фигур совпадают и расположены выше оснований. Плоскость основания конуса принадлежит горизонтальной плоскости проекций. Плоскость основания пирамиды параллельна плоскости основания конуса и выше ее на 30 мм. Высота пирамиды 50 мм. Требуется:

1) построить фронтальную и горизонтальную проекции двух фигур с соблюдением проекционной связи; 2) построить проекции линии пересечения фигур с обозначением вершин и границ участков линии;

3) обозначить видимость фигур и линии их пересечения;

4) оформить все изображения по ГОСТ 2.303-306;



№	Критерии задача 4а	Да	Нет
1	Построена фронтальная и горизонтальная проекции двух фигур	2	-
2	Построена линия пересечения фигур	2	-
3	Определена видимость очерка конуса	1	-
4	Определена видимость очерка пирамиды	1	-
5	Определена видимость участков линии пересечения	2	-
6	Чертеж оформлен с обозначением проекций вершин и границ участков линии пересечения	2	-
	Итого	до 10	

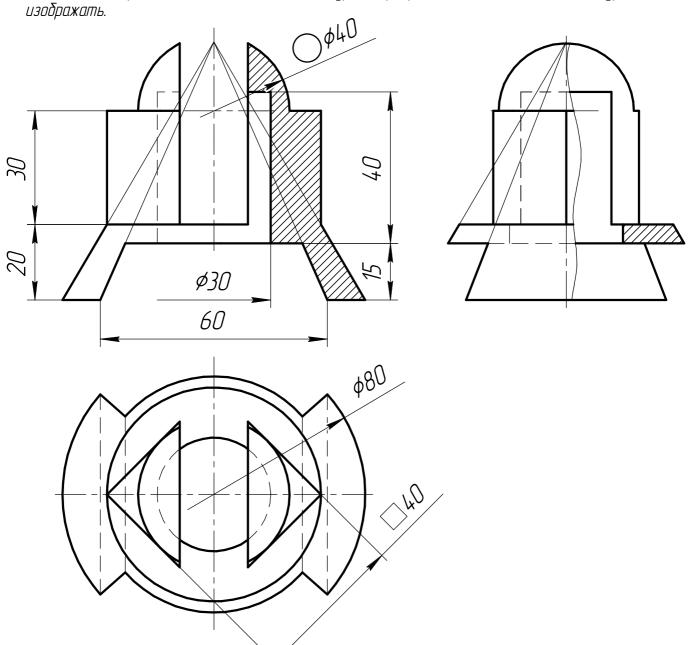
Профиль: Компьютерное моделирование и графика; тур по математике и инженерной графике. Вариант:2 класс: 10–11

Задача 6 (20 баллов). Даны две проекции фигуры.

Требуется:

- 1) на месте вида слева оформить изображение как соединение части вида и части профильного разреза;
- 2) главный вид оформить как соединение половины вида и половины фронтального разреза,
- 3) все изображения оформить по ГОСТ 2.305–2008,
- 4) решение оформить линиями по ГОСТ 2.303-68;
- 5) штриховку выполнить по ГОСТ 2.306-68;
- 6) проставить размеры по ГОСТ 2.307–2011

7) на видах сохранить линии невидимого контура, на разрезах линии невидимого контура не изобоажать



№	Критерии задача 6 (Вариант№1)	Да	Нет
1	Общие требования:		
	Построены три изображения в проекционной связи. На видах невидимый контур показан	4	-
	штриховой линией и на разрезах линии невидимого контура не обозначены		
2	Главный вид		
	Главный вид выполнен как соединение части вида и части фронтального разреза без	4	-
	указания положения секущей плоскости и обозначения разреза (с указанием волнистой		
	линии разделения вида и разреза)		
3	Вид слева		
	Вид слева выполнен как соединение части вида и части профильного разреза без указания	5	-
	положения секущей плоскости и обозначения разреза (с указанием волнистой линии		
	разделения вида и разреза)		
4	Вид сверху		
	Вид сверху выполнен без разреза (учитывать только при выполнении пункта 1)	2	-
5	Указание размеров		
	Обозначены более половины необходимых размеров	4	-
6	Оформление		
	Изображение, толщина линии и штриховка выполнены в соответствии ЕСКД	1	-
	Итого	до	20