Второй (очный) этап академического соревнования

Олимпиады школьников «Шаг в будущее» по общеобразовательному предмету «Математика», весна 2020 г.

8 класс

Вариант № 4

- **1.** (10 баллов) Творческий конкурс в институт состоял из четырех заданий. Всего абитуриентов было 70 человек. Первое испытание успешно выдержали 35, второе 48, третье 64, четвертое 63 человека, при этом все 4 задания не выполнил никто. Прошедших и третье, и четвертое испытания зачислили в институт. Сколько было зачисленных?
- **2.** (15 баллов) Пусть $f(x) = x^2 5x + 2020$. Решите уравнение f(3-x) = f(3x-1).
- **3.** (15 баллов) В выпуклом четырехугольнике ABCD AB = 10, CD = 15. Диагонали AC и BD пересекаются в точке O, AC = 20, треугольники AOD и BOC имеют равные площади. Найдите AO.
- 4. (20 баллов) При каких значениях параметра а уравнение

$$\left|\frac{-4x^4 - (6a+10)x^3 + (16-4a)x^2 - (6a^2 - 14a - 40)x}{(4-x^2 - a)(3a+2x+5)}\right| = \sqrt{a^2 - 2a + 1}$$
 имеет одно решение?

- **5.** (20 баллов) В выпуклом четырехугольнике ABCD $\angle B = \angle D = 90^{\circ}$, диагонали AC и BD взаимно перпендикулярны, а диагональ AC является биссектрисой углов A и C. Найдите углы A и C, если AC=2BD. Ответ дайте в градусах.
- **6.** (20 баллов) Даны 10 натуральных чисел, сумма любых четырёх из них чётна. Может ли произведение всех десяти чисел оканчиваться на 1580? Ответ обоснуйте.

Решение варианта № 4

1. (10 баллов) Творческий конкурс в институт состоял из четырех заданий. Всего абитуриентов было 70 человек. Первое испытание успешно выдержали 35, второе 48, третье 64, четвертое 63 человека, при этом все 4 задания не выполнил никто. Прошедших и третье, и четвертое испытания зачислили в институт. Сколько было зачисленных?

Решение. 1-е и 2-е задания решили минимум 35+48-70=13 человек. 3-е и 4-е - минимум 64+63-70=57 человек. Все задания не сделал никто, значит, 1-е и 2-е осилили 13 человек, 3-е и 4-е - 57 человек.

Ответ: 57 человек.

Критерии.

Баллы	Условия выставления
10 баллов	Обоснованное решение
5 баллов	При обоснованном решении допущена арифметическая ошибка или решение недостаточно обосновано.
0 баллов	Любая другая ситуация

2. (15 баллов) Пусть $f(x) = x^2 - 5x + 2020$. Решите уравнение f(3-x) = f(3x-1)

Решение: Пусть уравнение имеет вид f(a) = f(b), получаем что:

$$a^{2}-5a+2020=b^{2}-5b+2020$$

$$a^{2}-b^{2}-5a+5b=0$$

$$(a-b)(a+b-5)=0$$

Произведение двух множителей равно нулю, если хотя бы один из множителей равен нулю. Следовательно, a=b или a+b=5.

$$\begin{bmatrix} a=b \\ a+b=5 \Leftrightarrow \begin{bmatrix} 3-x=3x-1 \\ 3-x+3x-1=5 \end{cases} \Leftrightarrow \begin{bmatrix} x=1 \\ x=1,5 \end{bmatrix}$$

Ответ: {1,5 и 1}.

Критерии.

Баллы	Условия выставления
15	Обоснованно получен правильный ответ
10	Получен неверный ответ из-за арифметической ошибки
0	Решение не соответствует ни одному из вышеперечисленных условий

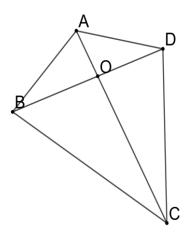
3. (15 баллов) В выпуклом четырехугольнике ABCD AB = 10, CD = 15. Диагонали AC и BDпересекаются в точке O, AC = 20, треугольники AOD и BOC имеют равные площади. Найдите AO.

Решение:

Из равенства площадей треугольников AOD и BOC и равенства углов $\angle AOD = \angle BOC$ следует $\frac{AO \cdot OD}{BO \cdot OC} = 1$ (по теореме об отношении площадей треугольников, имеющих по равному углу).

Откуда получаем, что $\frac{AO}{OC} = \frac{BO}{OD}$. При этом $\ \angle AOB = \angle DOC$ как вертикальные. Следовательно

треугольники AOB и COD подобны. $\frac{AB}{BC} = \frac{AO}{OC} = \frac{2}{3}$, а значит AO = 8.



Ответ: 8.

Критерии:

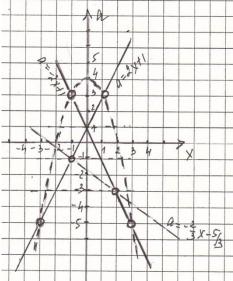
Баллы	Условия выставления
15 баллов	Полное, обоснованное решение
12 баллов	Ход решения верный, но допущена вычислительная ошибка.
10 баллов	Доказано подобие треугольников <i>AOB</i> и <i>COD</i> , но дальнейшие действия не выполнены или выполнены неверно.
5 баллов	Правильно применена теорема об отношении площадей треугольников, имеющих по равному углу, но дальнейшие действия не выполнены или выполнены неверно.
0 баллов	Решение не соответствует перечисленным выше критериям

4. *(20 баллов)* При каких значениях параметра а уравнение
$$\left|\frac{-4x^4-(6a+10)x^3+(16-4a)x^2-(6a^2-14a-40)x}{(4-x^2-a)(3a+2x+5)}\right|=\sqrt{a^2-2a+1} \ \text{имеет одно решение?}$$

Решение

Преобразуем

$$\left| \frac{-4x^4 - (6a+10)x^3 + (16-4a)x^2 - (6a^2 - 14a - 40)x}{(4-x^2 - a)(3a+2x+5)} \right| = \sqrt{a^2 - 2a + 1}$$



$$\left| \frac{2x(-2x^3 - (3a+5)x^2 + (8-2a)x - (3a^2 - 7a - 20))}{12a - 3ax^2 - 3a^2 + 8x - 2x^3 - 2ax + 20 - 5x^2 - 5a} \right| = = \sqrt{(a-1)^2}$$

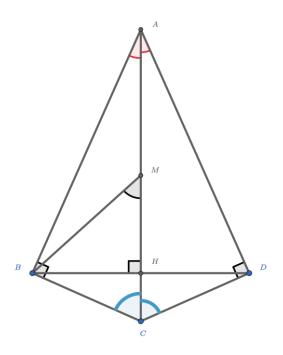
Решим графически уравнение |2x| = |a-1|, $a \ne 4 - x^2$, $a \ne -\frac{2}{3}x - \frac{5}{3}$, в системе xOa.

To есть
$$\begin{bmatrix} a = 2x + 1 \\ a = -2x + 1 \end{bmatrix}$$
, $a \neq 4 - x^2$, $a \neq -\frac{2}{3}x - \frac{5}{3}$

Ответ: при a = -3, a = -1, a = 1.

Баллы	Условия выставления
20 баллов	Верное обоснованное решение
15 баллов	Функции верно преобразованы, составлено уравнение, при его
	аналитическом решение решении допущена вычислительная ошибка, не
	связанная с областью определения функции.
10 баллов	Функции верно преобразованы, составлено уравнение, при графическом
	решении не исключены точки, не входящие в область определения
	функции.
5 баллов	Выполнено упрощение выражений, задающих функции, составлено
	уравнение, но оно не решено или решено неверно.
0 баллов	Другие решения, не соответствующие вышеперечисленным критериям

5. (20 баллов) В выпуклом четырехугольнике ABCD $\angle B = \angle D = 90^\circ$, диагонали AC и BD взаимно перпендикулярны, а диагональ AC является биссектрисой углов A и C. Найдите углы A и C, если AC=2BD. Ответ дайте в градусах.



Решение.

- 1. Пусть H точка пересечения диагоналей четырехугольника ABCD. Рассмотрим треугольник BAD. AH высота и биссектриса, следовательно, треугольник BAD равнобедренный. По признаку. Значит, BH=HD. По условию AC=2BD, тогда пусть BH = x, тогда AC = 4x.
- 2. Рассмотрим треугольник ABC прямоугольный. Проведем медиану BM треугольника ABC. По свойству медианы $BM = AM = MC = \frac{1}{2}AC = 2x$.
- 3. Рассмотрим треугольник ВМН. $BH = \frac{1}{2}BM$. Значит, по свойству катета прямоугольного треугольника $\angle BMH = 30^{\circ}$.
- 4. Треугольник ВМС равнобедренный, значит, $\angle MBC = \angle MCB = \frac{180^{\circ} 30^{\circ}}{2} = 75^{\circ}$. Так как AC биссектриса угла BCD, то $\angle ACD = \angle ACB = 75^{\circ}$. Следовательно, $\angle BCD = 150^{\circ}$.
- 5. В треугольнике ABC $\angle BAC = 90^{\circ} 75^{\circ} = 15^{\circ}$. AC биссектриса угла BAD, значит, $\angle BAD = 30^{\circ}$.

Other: $\angle BCD = 150^{\circ}; \angle BAD = 30^{\circ}$

Баллы	Условия выставления
20 баллов	Верное обоснованное решение
15 баллов	Решение верное, но недостаточно обосновано. Или решение верное, но ответ записан не в градусах (через обратные тригонометрические функции)
10 баллов	В решении использовано свойство медианы, свойство угла 30°, но дальнейшее решение отсутствует или неверно. ИЛИ верно найден один из углов четырехугольника с использованием тригонометрии.
0 баллов.	Решение не соответствует ни одному из критериев, перечисленных выше.

6. (20 баллов) Даны 10 натуральных чисел, сумма любых четырёх из них чётна. Может ли произведение всех десяти чисел оканчиваться на 1580? Ответ обоснуйте.

Решение:

Очевидно, что чётность всех чисел одинакова. В противном случае, если есть числа с разной чётностью, то чисел хотя бы одной из этих чётностей хотя бы 3 (по принципу Дирихле), в таком случае, мы можем взять эти 3 числа и 1 число другой четности, и сумма этих четырех числе не будет чётной. Но если все они нечётные, то произведение нечётно, а если чётные, то делится на 2^{10} . Однако число, которое кончается на 1580, делится на 4, но не делится на 8.

Ответ: нет

Критерии:

Баллы	Условия выставления
20 баллов	Любое полное и верное решение
15 баллов	Показано, что произведение должно делиться на 2^{10}
10 баллов	Описано, что все числа имеют одинаковую чётность, но дальнейших продвижений нет
5 баллов	Описано, что все числа имеют одинаковую чётность, но дальнейших продвижений нет
0 баллов.	Решение не соответствует ни одному из критериев, перечисленных выше или написан только ответ.