Московский государственный технический университет имени Н.Э. Баумана Олимпиада школьников «Шаг в будущее»

МАТЕМАТИКА

(заключительный этап)

2018-2019 учебный год

9 класс

Вариант - 7

- **1.** (10 баллов) Внутри ромба ABCD построен равносторонний треугольник AMB. Найдите угол CMD.
- **2.** (10 баллов) Мимо бассейна объёмом 400м³ литров воды шли 37 слонов. Часть из них решило освежиться. После их водных процедур выяснилось, что в среднем каждый слон использовал столько кубометров воды, сколько слонов не участвовали в купании. Известно, что в бассейне остался наименьший из возможных объём воды. Определите, какой объём воды остался в бассейне, сколько воды было израсходовано. Какое наибольшее количество слонов при таких условиях могло участвовать в купании?
- **3.** *(20 баллов)* Определить количество решений системы $\begin{cases} (3-x)\cdot |x+1| = y \\ y-6 = a\cdot (x-3) \end{cases}$

в зависимости от параметра a.

- **4.** (20 баллов) Имеется 20 шаров с числами 1, 2, ..., 10, каждое число встречается по два раза. Эти шары случайным образом раскладываются по два в 10 корзин. Из каждой корзины извлекается один шар. Какова вероятность того, что на извлеченных шарах все числа различны?
- **5.** *(20 баллов)* Решите неравенство:

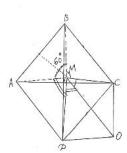
$$\frac{2x^2 - x + 7}{\sqrt{2x^2 - x + 3}} \le 7 - \sqrt{9 + \sqrt{16x^4 - 8x^2 + 1}}.$$

6. (20 баллов) Внутри выпуклого четырехугольника пять прямых делят его на шесть четырехугольников, а две его противоположные стороны — на шесть одинаковых частей каждую. Найдите площадь четвертого из полученных четырехугольников, если сумма площадей первого, пятого и шестого равна 60.

Решение. 9 класс. Вариант 7.

1. (10 баллов). Внутри ромба ABCD построен равносторонний треугольник AMB. Найдите угол CMD.

Решение.



Проведем отрезок MO, равный и параллельный BC. Четырехугольник MBCO - ромб и AMOD - ромб. Тогда

$$\angle OMC = \frac{1}{2} \angle BMO; \angle OMD = \frac{1}{2} \angle AMO; \angle AMO + \angle BMO = 360^{\circ} - \angle AMB = 360^{\circ} - 60^{\circ}$$
$$= 300^{\circ}; \angle CMD = \angle OMD + \angle OMC = 150^{\circ}$$

Ответ: 150°

Баллы	Критерии выставления
10	Обоснованно доведено до правильного ответа.
баллов	
5 баллов	Есть попытки использовать свойства фигур и соотношения
	углов, но ответ неверный.
0 баллов	Несвязные рассуждения.

2.(10 баллов). Мимо бассейна объёмом 400м³ литров воды шли 37 слонов. Часть из них решило освежиться. После их водных процедур выяснилось, что в среднем каждый слон использовал столько кубометров воды, сколько слонов не участвовали в купании. Известно, что в бассейне остался наименьший из возможных объём воды. Определите какой объём воды остался в бассейне, сколько воды было израсходовано. Какое наибольшее количество слонов при таких условиях могло участвовать в купании?

Решение. Пусть х слонов не участвовали в купании или сколько воды использовал каждый слон при купании, тогда 37-х слонов участвовали в

купании; (37-x) x — воды было израсходовано; 400-(37-x) x — остаток воды в бассейне.

$$y = 400-(37-x) x$$
;

$$y=400-(37-x) x = x^2-37x+400;$$

$$x_B = 18,5$$
;

$$x_1=18$$
, $y_1=58$; купались 19 слонов.

$$x_2=19$$
, $y_2=58$; купались 18 слонов.

Израсходовано 400-58=342 (м³) воды.

Ответ. а) 58м³ воды осталось в бассейне;

- б) израсходовано 342 м³ воды;
- в) 19 слонов.

Баллы	Критерии выставления
10	Обоснованно получен правильный ответ.
8	При верном ходе решения допущена арифметическая ошибка.
5	Решено подбором значений переменной, но без учёта ОДЗ.
0	Решение не соответствует ни одному из критериев, перечисленных
	выше.

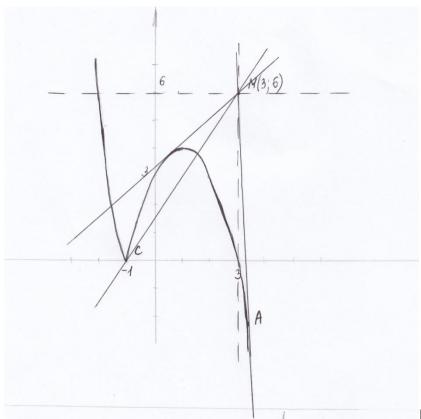
3. (20 баллов). Определить количество решений системы
$$\begin{cases} (3-x)\cdot \big|x+1\big|=y\\ y-6=a\cdot (x-3) \end{cases}$$

в зависимости от параметра a.

Построим графики функций, входящих в систему, в одной системе координат. Раскроем модуль в первом уравнении.

$$y =$$
 $\begin{bmatrix} (3-x)(x+1), x \ge -1 \\ (x-3)(x+1), x < -1 \end{bmatrix}$ (1). График этой функции состоит из частей двух

парабол, соединяющихся в точке с координатами (- 1;0). Второе уравнение – уравнение пучка прямых с переменным угловым коэффициентом, проходящих через точку М(3;6) (см. рисунок).



Вертикальная прямая,

проходящая через точку М, имеет с графиком (1) только одну общую точку. Будем поворачивать прямую вокруг точки М против часовой стрелки. В положениях между вертикальным и касанием в точке А прямая пересечёт график в трёх различных точках (два раза направленную вниз правую ветвь и один раз направленную вверх левую). Найдём угловой коэффициент, соответствующий точке касания А. Составим уравнение

$$(3-x)(x+1) = ax-3a+6$$
; $2x-x^2-3-ax+3a=0$; $x^2+x(a-2)+3-3a=0$.

 $D=(a-2)^2-4(3-3a)=a^2+8a-8=0$; $a_{1,2}=-4\pm2\sqrt{6}$. Значение $a=-4-2\sqrt{6}$ соответствует касательной МА, $a=-4+2\sqrt{6}$ соответствует другой касательной МВ. Определим, при каком значении параметра график проходит через точку C(-1;0). 0-6=a(-1-3); a=1,5. С помощью проведённого исследования и графика запишем ответ.

Ответ: $a \in (-\infty; -4-2\sqrt{6})$ - 3 решения; $a = -4-2\sqrt{6}$ - 2 решения; $a \in (-4-2\sqrt{6}; -4+2\sqrt{6})$ - 1 решение; $a = -4+2\sqrt{6}$ - 2 решения; $a \in (-4+2\sqrt{6}; 1,5)$ - 3 решения; a = 1,5 - два решения; $a \in (1,5; +\infty)$ - 1 решение.

Баллы	Критерии выставления
20	Обоснованно получен правильный ответ.
15	Ход решения верный. Ответ незначительно отличается от

	правильного из-за арифметической ошибки.
10	При аналитическом решении рассмотрены обе системы, но
	результатов объединения нет.
5	Решение начато в правильном направлении (например,
	построены графики и задача сведена к определению
	количества точек пересечения). Однако дальнейшее решение
	неверно или не завершено.
0	Решение не соответствует вышеперечисленным требованиям.

 $4.(20\ баллов)$ Имеется $20\ шаров$ с числами 1,2,...,10, каждое число встречается по два раза. Эти шары случайным образом раскладываются по два в $10\$ корзин. Из каждой корзины извлекается один шар. Какова вероятность того, что на извлеченных шарах все числа различны? Решение. Пусть из i-ой корзины извлекается шар с номером a_i , после чего в корзине остается шар с номером b_i , i=1,2,...,10. Все исходы этого испытания можно описать последовательностью $a_1,b_1,a_2,b_2,...,a_{10},b_{10}$, в которой каждое число от $1\$ до $10\$ встречается по два раза. Всего таких перестановок с повторениями $\frac{20!}{(2!)^{10}} = \frac{20!}{2^{10}}$. В благоприятных исходах испытания числа $a_1,a_2,...,a_{10}$ и числа $b_1,b_2,...,b_{10}$ образуют перестановки от $1\$ до $10\$. Поэтому количество благоприятных исходов равно $(10!)^2\cdot 2^{10}$. Искомая вероятность равна $\frac{(10!)^2\cdot 2^{10}}{20!}$. Ответ: $\frac{(10!)^2\cdot 2^{10}}{20!}$.

Баллы	Критерии выставления
20	Обоснованно получен правильный
	ответ.
10	Построена вероятностная модель, но
	при подсчете или всех исходов, или
	благоприятных исходов допущена
	ошибка.
0	Решение не соответствует ни одному
	из вышеперечисленных условий.

5. (20 баллов). Решите неравенство:

$$\frac{2x^2 - x + 7}{\sqrt{2x^2 - x + 3}} \le 7 - \sqrt{9 + \sqrt{16x^4 - 8x^2 + 1}}$$

Решение:

Преобразуем правую и левую части неравенства:

$$\frac{2x^2 - x + 3 + 4}{\sqrt{2x^2 - x + 3}} \le 7 - \sqrt{9 + \sqrt{(4x^2 - 1)^2}}$$

$$\sqrt{2x^2 - x + 3} + \frac{4}{\sqrt{2x^2 - x + 3}} \le 7 - \sqrt{9 + |4x^2 - 1|}$$

ОДЗ неравенства есть все действительные числа. Переписав левую часть неравенства в виде $2\left(\frac{\sqrt{2x^2-x+3}}{2} + \frac{2}{\sqrt{2x^2-x+3}}\right)$ замечаем, что она не меньше 4, как удвоенная сумма двух взаимно обратных положительных величин, и только при $\frac{\sqrt{2x^2-x+3}}{2} = 1$ она равна 4.

В то же время правая часть неравенства $7 - \sqrt{9 + |4x^2 - 1|} \le 4$

Следовательно, неравенство равносильно системе уравнений:

$$\begin{cases} \sqrt{2x^2 - x + 3} = 2\\ \sqrt{9 + |4x^2 - 1|} = 3 \end{cases} \Leftrightarrow \begin{cases} 2x^2 - x - 1 = 0\\ |4x^2 - 1| = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1; -0.5\\ x = \pm 0.5 \end{cases} \Leftrightarrow x = -0.5$$

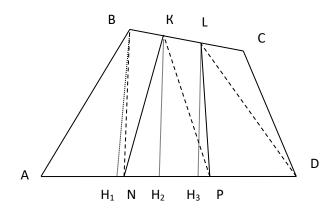
Ответ: x = -0.5.

Баллы	Критерии выставления	
20	Обоснованно получен правильный ответ	
15	При обоснованном решении ответ отличается от правильного из-за	
	арифметической ошибки	
10	Верно выполнены оценки обеих частей неравенства и/или задача	
	сведена к равносильной системе уравнений	
5	Верно выполнена оценка одной части неравенства	
0	Решение не соответствует ни одному из вышеперечисленных	
	условий	

6.(20 баллов) Внутри выпуклого четырехугольника пять прямых делят его на шесть четырехугольников, а две его противоположные стороны — на шесть одинаковых частей каждую. Найдите площадь четвертого из полученных

четырехугольников, если сумма площадей первого, пятого и шестого равна 60.

Решение. Рассмотрим случай с двумя прямыми KN и LP. Пусть BH_1 , KH_2 , LH_3 – высоты треугольников ABN, NKP и PLD, соответственно.



Так как BH_1H_3L — трапеция, а KH_2 — ее средняя линия (по теореме Фалеса: $BH_1 \mid KH_2 \mid LH_3$ и BK=KL). Из условия задачи AN = NP = PD, поэтому $S_{KNP} = \frac{1}{2}(S_{ABN} + S_{DLP})$. Аналогично, $S_{KLP} = \frac{1}{2}(S_{KBN} + S_{DLC}) => S_{KLPN} = \frac{1}{2}(S_{KBAN} + S_{DPLC})$.

Получается, что площади четырехугольников составляют арифметическую прогрессию, так как в любой тройке выполняется условие среднего арифметического и для шести четырехугольников.

По свойству арифметической прогрессии: $S_4 = \frac{1}{3}(S_1 + S_5 + S_6) = 20$. Ответ: 20.

Баллы	Критерии выставления
20	Обоснованное и грамотно выполненное решение задачи.
15	При верном и обоснованном ходе решения имеется
	арифметическая ошибка или решение недостаточно
	обосновано.
	Верно начато решение задачи, получены некоторые
7	промежуточные результаты, дальнейшее решение неверно
	или отсутствует.
0	Решение не соответствует вышеперечисленным
	требованиям.